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Abstract
Generative AI’s function as a frictionless "answer engine" creates
a paradox in educational HCI: the very tools that can enhance
intellect may also weaken it by allowing users to circumvent cru-
cial cognitive processes. This risks creating a "hollowed mind"—
knowledge that is broad but superficial, and a user experience that
diminishes learner agency. The convenience of cognitive offloading
introduces a motivational challenge that traditional cognitive scaf-
folding cannot address. We argue that designing genuine human-AI
partnerships in learning requires moving beyond cognitive support
to motivation-aware scaffolding. This paper provides a toolkit for
building motivation-aware AI systems. At its core is the Dual Zone
of Proximal Development (DZPD), a conceptual framework building
on foundational work in educational psychology. We introduce an
overarching design principle, concrete design principles, illustrative
archetypes, and examples of measurable indicators. These concep-
tual tools offer essential guidance for the next wave of empirical
HCI research in education.

CCS Concepts
• Human-centered computing→ Interaction design theory,
concepts and paradigms; • Applied computing → Education;
• Computing methodologies→ Artificial intelligence.
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1 Introduction: The Motivational Gap in
Educational AI

The integration of large language models (LLMs) and generative
AI into education has been heralded as a paradigm shift. By exter-
nalizing memory, reasoning, and creativity, AI systems promise to
act as a collaborative partner and extended mind [18], amplifying
cognition and broadening problem-solving capacity [45, 67]. How-
ever, this very power creates a profound motivational challenge
that is unprecedented in the history of educational technology, pos-
ing a central question for Human-Computer Interaction (HCI) in
education: How can we redesign the human-AI partnership to foster
deep engagement and restore learner agency, rather than reinforcing
convenience-driven shortcuts?

While the importance ofmotivation in learning is well-established,
previous frameworks were not designed for a world where effort-
less, synthesized answers to complex problems are perpetually
available. Older tools like calculators or search engines offloaded
discrete tasks, but left the essential, effortful work of synthesis
and explanation to the learner. In contrast, today’s generative AI
can automate this entire generative process, tempting learners to
bypass the very cognitive work—the ’desirable difficulties’—that is
essential for building robust knowledge [49, 94]. From a Vygotskian
perspective, one might say that the AI system increasingly takes
on the role of the “more knowledgeable other”. Yet unlike a human
teacher who tailors support and challenges to a student’s current
competence, generative AI tends toward frictionless provision of
answers, turning scaffolding into short-circuiting.

This creates what we term the Convenience Paradox: the more
frictionless the AI, the greater the risk it undermines the learner’s
own engagement, fostering a ’hollowed mind’ [56]—knowledge that
is broad but superficial and that lacks the foundation for long-term
intellectual sovereignty. Because this convenience continuously
tempts learners to prematurely offload effort, it poses a motiva-
tional challenge that traditional frameworks are not equipped to
address. At stake is nothing less than the core purpose of educa-
tional technology. For decades, HCI has sought to design tools that
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scaffold cognitive effort, helping learners build durable knowledge
through guided struggle. With the rise of generative AI, this pur-
pose is at risk of inversion: tools so powerful that they may render
effort itself obsolete. We argue that this calls for reconceiving AI not
as a mere information provider but as a pedagogically-aware part-
ner, demanding a new paradigm of motivation-aware scaffolding
that actively cultivates students’ willingness to engage in effortful
work when an easy alternative is always at hand.

To address this challenge, we propose the Dual Zone of Proximal
Development (DZPD), a framework built on two complementary
zones. The first is Vygotsky’s well-established cognitive Zone of
Proximal Development, which we will refer to as the c-ZPD [89]. It
describes what a learner can do with cognitive support. The second,
building on the seminal work of Brophy [12], is the motivational
Zone of Proximal Development, whichwewill refer to as them-ZPD.
It describes the potential for a learner’s motivation and engagement
to grow with affective and pedagogical support. For the specific
context of AI-mediated learning, we operationalize Brophy’s con-
cept of the m-ZPD as the Zone of Proximal Motivation (ZPM). The
ZPM therefore serves as the concrete, measurable motivational axis
in our framework, representing the learner’s moment-to-moment
willingness to engage. Crucially, learning can only be sustained
if motivation remains within a functional range—high enough to
resist the temptation of effortless shortcuts yet resilient enough to
withstand challenges.

This idea aligns with insights from Self-Determination Theory
(SDT) [24, 57, 79, 80], which emphasizes the centrality of autonomy,
competence, and relatedness for sustained motivation. A genuine
human-AI partnership for learning requires learners in the intersec-
tion of c-ZPD and ZPM, where cognitive challenge andmotivational
engagement reinforce one another.

AI learning companions have evolved in recent years from static
scripted agents to dynamic, adaptive partners [77, 96]. Three archetyp-
ical roles stand out: Teachable Agents, which leverage the protégé
effect by requiring learners to explain and instruct [10, 14]; Col-
laborative Companions, which simulate peer-like interactions that
maintain social motivation [30]; and Creative Co-Creators, which
support divergent thinking and creative ownership [3, 59, 66, 76].
Each of these roles illustrates a shift from a transactional tool to a
relational partner, redesigning the interaction to foster sustained
learning.

The danger of the Convenience Paradox, however, is particularly
visible in everyday educational practice. Learners may copy-paste
AI outputs without reflection, rely on LLMs for assignments in-
stead of working through problems themselves, or gradually lose
confidence in their own problem-solving competence, leading to
diminished self-efficacy [58, 93]. In all of these cases, a breakdown
in the learning partnership occurs because the ease of access under-
mines the very processes of learning engagement [38]. Convenience
doesn’t just bypass cognition; it actively erodes motivation by short-
circuiting behavioral engagement (making effort unnecessary) and
cognitive engagement (replacing deep thinking with shallow an-
swers). Over time, this robs the learner of the feelings of mastery
and satisfaction that fuel affective engagement, thereby weakening
the very foundations of sustained, self-directed learning.

The aim of this paper is to contribute a conceptual framework for
the redesign of motivating AI learning ecosystems. We argue that to

move beyond the risk of “hollowed minds”, such ecosystems must
be designed around our proposed DZPD. This DZPD framework
is built on the intentional fostering of both cognitive readiness (a
learner’s ability to tackle a challenge) and motivational readiness.
By motivational readiness, we refer to a learner’s willingness to
productively engage with that challenge on three levels [38]: behav-
iorally, by investing effort; cognitively, by using deep-level learning
strategies; and affectively, by finding value and satisfaction in the
process.

This paper makes a foundational theoretical and methodolog-
ical contribution, providing the concepts, design principles, and
evaluation toolkit necessary to guide the next wave of empirical
HCI research in motivation-aware educational AI. Specifically, this
paper makes the following contributions:

• A novel conceptual framework, the Dual Zone of Proximal
Development (DZPD), which defines the Productive Learning
Zone (PLZ) and integrates cognitive readiness (c-ZPD) and
motivational willingness (ZPM) for designing educational
AI.

• A generative design principle, Obligatory Generativity and
Responsibility (OGR), as a practical antidote to the “Conve-
nience Paradox” of generative AI.

• A concrete set of five actionable design principles (P0–P4)
that translate the DZPD framework into prescriptive guid-
ance for pedagogical instructional design.

• A heuristic toolkit of computable indicators to make the
DZPD empirically tractable and to generate testable propo-
sitions for future research.

To illustrate the practical power of this framework, we demon-
strate howOGR is already embodied in three emerging co-constructive
AI roles: Teachable Agents, Collaborative Companions, and Cre-
ative Co-Creators. Together, these contributions provide a clear
pathway from the risk of hollowed minds toward the cultivation of
fortified minds.

2 Related Work
Our framework is situated at the intersection of HCI, learning
sciences, and motivational psychology. We first ground our work in
HCI perspectives on the Convenience Paradox to frame the problem
of the “hollowed mind.” We then introduce the core psychological
theories and existing AI archetypes that provide the foundation for
our solution.

2.1 The Promise and Peril of Cognitive
Extension in HCI

The concept of the ExtendedMind positions cognition as distributed
across brains, bodies, tools, and social ecologies [18]. In this view,
digital technologies—and now AI systems—serve as external cogni-
tive resources that expand human problem-solving capacity [67]. In
education, this perspective suggests AI can function as a cognitive
amplifier, helping learners explore ideas more deeply and creatively
than unaided effort would allow. Framed as assistants, current AI
systems and LLMs are presented as seamless “cognitive extenders”
that promise relief from routine effort so that learners can “focus
on higher-order thinking” [44].
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Yet generative AI differs qualitatively from earlier cognitive tools.
A calculator offloads discrete computations; a book provides infor-
mation for internalization. The ability of LLMs to produce fully
synthesized cognitive outputs—essays, plans, solutions—automates
the very generative processes [94] of synthesis and argumentation,
which is precisely what allows users to bypass the mental effort
required to build a resilient internal architecture for deep reasoning.

These risks of cognitive bypassing are not new; decades of work
on digital cognition have foreshadowed them. The “Google effect”
shows that when information is externally accessible, people store
where to find it rather than what it is [81]; searching can also
inflate illusions of internal knowledge [37]. A parallel appears in
navigation: GPS reliance correlates with weaker spatial maps and
poorer transfer to novel routes [50]. By analogy, LLM reliance can
yield task success without schema growth, undermining future
transfer.

Now, with generative AI, these well-documented patterns are
materializing in high-stakes professional work. Empirically, the
pattern is nuanced: human-AI teams often underperform the best
individual partner, and gains materialize only when the human has
stronger expertise [87]. In field settings, novices benefit on routine
tasks but falter at the “jagged frontier” where AI is unreliable; rely-
ing on AI there produced a 19-point drop for juniors in consulting,
while experts succeeded by rejecting flawed suggestions [26]. Sim-
ilar asymmetries appear in software development and customer
support, where productivity gains concentrate among lower-skill
workers on routine work, with minimal advantages for experts
[72]. These findings provide a robust foundation for the “Expertise
Paradox,” a term popularized by observers like Wharton’s Ethan
Mollick [71] to describe how AI is most beneficial not for novices,
but for experts who can critically evaluate and integrate its outputs.

Kahneman’s dual-process theory helps explain these asymme-
tries [54]. Because AI outputs arrive with high fluency and confi-
dence, they encourage fast, intuitive System 1 thinking and accep-
tance. Overriding that impulse requires effortful System 2monitoring—
checking assumptions, tracing logic, and possibly testing counter-
factuals. Novices often lack the schemas and error-detection cues
needed to know when to trigger System 2.

Taken together, these findings highlight the Convenience Para-
dox: the more frictionless AI becomes, the greater the risk that
learners will bypass effortful cognitive engagement in favor of short-
cutting, producing what we call the "Hollowed Mind", a risk fore-
shadowed in critical analyses of educational automation [58, 63, 93].

2.2 Foundations for a Motivation-Aware
Approach

To address the Convenience Paradox, we must re-examine the foun-
dations of educational support, starting with the now-insufficient
model of purely cognitive scaffolding. The concept of the Zone of
Proximal Development (ZPD) has been successfully operational-
ized in Intelligent Tutoring Systems (ITS) to manage cognitive load,
guiding learners with adaptive feedback and tailored challenges
[88, 98]. Yet, the diagnosis of the Hollowed Mind reveals a critical
limitation of this approach in the age of generative AI.

This insufficiency arises because the Convenience Paradox intro-
duces a qualitatively new motivational challenge that prior models

were not designed to address. While the ITS community has long
recognized the need for motivational support [32], these frame-
works operated in contexts where effortful engagement was largely
unavoidable; they focused on supporting a learner through a “can-
not do” problem. Today’s frictionless “answer engines,” however,
create a dominant “will not do” problem, tempting learners to by-
pass the very generative processes essential for learning [12, 94].
Recent meta-analyses on AI in education confirm this distinction,
showing that AI succeeds when designed as a instructional de-
sign/cognitive scaffolding engine but fails when reduced to a uni-
versal “answer engine” [21, 99]. This latter model is a pedagogical
anti-pattern that bypasses “desirable difficulties” [11] and creates
extraneous cognitive load [82]. We therefore argue that this new
landscape necessitates a framework built on two complementary
zones of proximal development. We must complement Vygotsky’s
well-established cognitive ZPD (what a learner can do with guid-
ance) with a motivational ZPD (the engagement and self-regulation
a learner can sustain with support), an idea pioneered by Bro-
phy [12]. For the context of AI-mediated learning, we term this
second zone the Zone of Proximal Motivation (ZPM), a construct
specifically designed to regulate motivation against the unique
psychological pull of cognitive offloading.

What this distinction makes clear is that motivation acts as the
critical gatekeeper. A learner may be cognitively capable of mas-
tering a task but, when offered a frictionless alternative, unwilling
to invest effort—the classic "won’t do" problem. Without motiva-
tional scaffolding, even the most advanced cognitive scaffolding is
likely to collapse. Scaffolding has always been conceived as “equal
parts motivational and cognitive support” [95], and contemporary
research confirms the critical role of motivation, both as a prereq-
uisite to initiate cognitive engagement [2] and as a dynamic state
that is continuously manifested through that engagement during
the learning process [38]. The ITS community has long recognized
this challenge, with Del Solato and Du Boulay [25] and du Boulay
[32] proposing motivational indicators such as confidence, inde-
pendence, and effort as targets for adaptive support.

The central threat of the answer-engine model is its insidious
effect on motivation. Its convenience does not just bypass cognition;
it replaces deep, resilient motivation with a superficial substitute.
To be precise, while the ease of use may temporarily boost affective
engagement through the "enjoyment" of effortless task comple-
tion, it does so by actively eroding the foundations of learning.
It systematically undermines behavioral engagement by making
effort unnecessary, and cognitive engagement by replacing deep
thinking with shallow answers. This trade-off is profoundly dam-
aging: removing the "desirable difficulties" strips learning of the
very experiences that build lasting interest and genuine self-efficacy
[49, 82]. Second, learners display present bias—preferring immedi-
ate answers over the delayed rewards of understanding [61]. Third,
overreliance on AI is linked to declines in critical evaluation and
active engagement, reinforcing passivity rather than generative
work [99]. Together, these dynamics depress the motivational dri-
vers needed to sustain effortful learning and weaken the conditions
required to keep learners in a productive zone.

The upshot is clear: in educational contexts—where the goal is
knowledge construction, not mere task completion—the prevailing
“answer-engine” interaction pattern systematically pulls learners
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toward convenience and away from the effort that builds transfer-
able schemas. This justifies a design shift from answer delivery to
scaffolded, generative engagement that makes the effortful path
the easy choice—preparing the ground for the DZPD framework
and the AI scaffolding patterns developed in the next sections.

2.3 HCI Precedents: Co-Constructive AI
Archetypes

The integration of LLMs and generative AI between 2020 and 2025
has fundamentally transformed three central domains of educa-
tional technology: Teachable Agents, Collaborative Companions,
and Creative Co-Creators systems. This transformation marks a
paradigm shift from rule-based, rigid interaction systems to flexible,
multimodal partners capable of teaching, learning, and creating
alongside human learners. Increasingly, the boundaries between
these categories are dissolving: modern AI systems can fluidly
transition between the roles of teacher, student, and creative col-
laborator, depending on context and learner needs [87].

2.3.1 Teachable Agents: Rethinking Learning by Teaching. Teach-
able agents—AI systems that learn through being instructed by
students—have undergone perhaps the most dramatic transforma-
tion in the LLM era. Early systems such as SimStudent required
thousands of lines of Java code and operated in narrow domains.
In contrast, modern LLM-based Teachable Agents deliver compa-
rable pedagogical benefits with far lower development costs and
vastly broader subject coverage [51]. Controlled studies demon-
strate strong learning gains: for example, Jin et al. [51] reported
a 71% increase in knowledge-building conversation density when
students used the TeachYou/AlgoBo system compared to traditional
methods. Other studies show that LLM-based Teachable Agents
support learning across diverse domains including music theory
[52] and coding [51, 69] with generalization capabilities to various
other fields [17].

The pedagogical power of Teachable Agents builds on the well-
established learning-by-teaching framework and the protégé effect,
which show that students invest more effort and achieve deeper
understanding when responsible for teaching others [14]. Mod-
ern LLM-based agents enhance this dynamic by simulating real-
istic learning behaviors, including authentic misconceptions and
knowledge gaps, which require students to explain and adapt their
teaching. At the same time, the integration of LLMs introduces chal-
lenges, as their extensive pre-trained knowledge risks discourag-
ing genuine student teaching unless carefully constrained through
prompting architectures and knowledge scaffolding [51].

2.3.2 Collaborative Companions: From Tools to Partners. AI learn-
ing companions have evolved from basic question-answering sys-
tems to sophisticated peer partners supporting both academic and
emotional dimensions of learning. Whereas Teachable Agents po-
sition the AI as a novice protégé that the student is responsible
for teaching, collaborative companions typically frame the AI as
a peer who shares the learner’s task rather than being its object.
Where pre-2020 systems offered limited, scripted responses, modern
companions engage in natural, contextually aware dialogues that
adapt to individual learning styles, cognitive states, and emotional
needs [47]. Recent studies illustrate diverse interaction patterns:

active questioners, responsive navigators, and silent listeners—all
yielding comparable learning outcomes through different modes of
engagement (see, e.g., [43]). Other studies already report successful
applications of such AI companions in STEM courses like physics
[34, 62] and medicine [5]. Multi-agent approaches such as the MAIC
(Massive AI-empowered Course) system demonstrate the potential
of specialized agent teams (teachers, assistants, creative sparkers,
note takers, etc.) to provide richer support than any single generalist
AI. Beyond cognitive benefits, companions enhance metacognitive
awareness, self-regulation, and motivation, with affective support
reducing anxiety and fostering persistence. These developments
align with social constructivist theories, positioning companions
not as tools but as collaborative partners in learning communities.

2.3.3 Creative Co-Creators: Toward Creative Partnerships. Co-creative
AI systems represent the newest frontier, made possible by advances
in generative AI. Crucially, this distinguishes Co-Creators from
the Collaborative Companions described above: while companions
primarily leverage social presence to scaffold self-regulation and
persistence, Co-Creators focus specifically on scaffolding divergent
thinking and the joint production of novel artifacts. In this dynamic,
the AI is not just a peer offering support, but an active collaborator
in the generative process itself. A systematic review by Urmeneta
and Romero [86] identifies three roles of AI in creative education:
facilitator (supporting ideation), co-creator (active collaborator),
and autonomous generator (independent producer). Empirical evi-
dence highlights robust benefits for creative learning. For example,
students using generative AI tools for digital storytelling showed
significant improvements across all creativity dimensions—novelty,
relevance, and collaboration—with a large effect size [86]. Appli-
cations now span writing, visual arts, music, and digital media,
democratizing creative expression and enabling multimodal pro-
duction at scale. Yet co-creative AI raises pedagogical concerns,
particularly the risk of cognitive offloading and diminished critical
evaluation. Moreover, evidence from programming education indi-
cates that expert users derive greater benefits from AI support than
novices [15]. Successful implementations balance efficiency gains
with deliberate reflection, ensuring that students remain engaged
in essential processes of meaning-making, evaluation, and creative
judgment.

2.3.4 Traditional Instructor-Oriented Tutoring Systems. While our
framework focuses on learner-centered interaction patterns in
which the student is positioned as more knowledgeable than or
at least epistemically aligned with the AI system, it is important
to acknowledge the long-standing tradition of teacher-like intel-
ligent tutoring systems (ITS), including recent LLM-based tutors
[60]. Classic ITS and hypermedia tutors such as MetaTutor [4, 28]
and AutoTutor [40, 41, 73] as well as newer LLM-driven agents
[9, 17, 75] adopt a fundamentally different pedagogical stance: the
system occupies the role of an expert instructor, delivering expla-
nations, diagnosing misconceptions, and regulating learning for
the student. Although these systems provide valuable empirical
grounding for the broader landscape of AI-supported learning, their
hierarchical teacher–student model contrasts with the relational
configurations central to our three archetypes—teachable agents,
collaborative companions, and creative co-creators—where learners
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guide, partner with, or co-create alongside the AI. By differenti-
ating our focus from these traditional teacher-like systems, we
clarify how the unified design space extends existing theoretical
foundations (ZPD, motivational ZPD, and SDT) toward interaction
paradigms that aim to empower and elevate the learner’s epistemic
agency.

2.3.5 Convergence and Integrated Learning Ecosystems. Perhaps
the most significant development is the convergence of Teach-
able Agents, Collaborative Companions, and Creative Co-Creators
into integrated ecosystems. Emerging platforms allow AI to shift
roles dynamically, acting as tutor, peer, or creative collaborator
depending on the learner’s needs [20]. Recent simulations such as
SimClass showcase multi-agent LLM-powered classrooms where
AI simultaneously assumes the roles of teacher, student, and collab-
orator. Advances in memory management, multimodal interfaces,
and external tool integration further enable persistent, evolving
relationships with learners across contexts.

This convergence suggests a fundamental evolution in educa-
tional technology: the move from static, tool-based systems toward
fluid, adaptive partnerships where AI becomes an active participant
in the social and creative fabric of learning. The challenge is thus
not merely technological but psychological: how can we design
AI systems and learning environments that encourage effortful
engagement in contexts where a frictionless shortcut is always
available? We argue that the answer lies in designing for cognitive
sovereignty, ensuring that learners develop the internal capacity to
critically engage with AI outputs. The following section introduces
the Dual Zone of Proximal Development (DZPD) as a framework
for balancing cognitive readiness and motivational willingness in
this endeavor.

3 The Productive Learning Zone: A Dual-ZPD
Framework for Motivation-Aware Design

3.1 Defining the Dual-ZPD Framework and the
Zone of Proximal Motivation (ZPM)

As established in our introduction, the theoretical foundation for
the motivational dimension of our framework is Jere Brophy’s
[12] concept of a motivational Zone of Proximal Development (m-
ZPD). He defined this as the range of activities "familiar enough
to the learner to be recognizable as a learning opportunity and
attractive enough to interest the learner in pursuing it" but not so
familiar as to be boring or so alien as to be unapproachable (p. 77).
Building directly on his work, we operationalize this concept for
the unique challenges of AI-mediated learning under the term Zone
of Proximal Motivation (ZPM). As Yung and Tao [97] emphasize,
learners can be advanced within this motivational zone through
modeling, coaching, and scaffolding, thereby fostering not only
cognitive competence but also appreciation and enjoyment of the
learning activity. At its core, this motivational zone—which we
term the ZPM—reflects the gap between a learner’s current valuing,
interest, and confidence and their potential to come to value and feel
confident about a domain with appropriate scaffolding. Teaching
“within” the ZPM involves calibrating the appeal and familiarity
of activities (not too foreign, not over-familiar) and using affective
supports, such as AI-delivered enthusiasm, appreciation-oriented

feedback, and an interaction climate that nurtures interest and self-
efficacy. Thus, where the cognitive ZPD is about stretching what
students can do with thinking support, the ZPM is about stretching
what they want and feel able to pursue, using social-emotional
support so that value and confidence “catch up” to the learning
opportunities. As Brophy argued, effective instruction must weave
both.

Glenn Regehr’s scholarship in medical education further clari-
fies how motivational development can itself be scaffolded through
what he and colleagues term the Educational Alliance [83, 84] and
the Supported Independence model [48]. This work describes moti-
vation not as a static trait but as a scaffolded process: learners first
recognize uncertainty in their knowledge or skills (self-monitoring),
then engage in comfort borrowing by relying on psychologically
safe supervisory relationships, progress to strategic help-seeking,
and finally enter guided problem-solving where support is gradu-
ally tapered until independence is achieved. This developmental
sequence directly mirrors the progression of Vygotsky’s ZPD: just
as cognitive scaffolding is withdrawn once it is no longer needed,
motivational scaffolding is progressively faded as learners inter-
nalize both competence and confidence to act autonomously. In
this sense, these models provide an empirical foundation for the
ZPM, highlighting that willingness to engage effortfully can be
cultivated through carefully designed relational scaffolds—that is,
supports grounded in the social-emotional dynamics of the learning
partnership, such as trust, credibility, and psychological safety. By
situating motivation within processes of supervision, credibility,
and trust, this framework underscores that the Productive Learning
Zone (PLZ) is not only a cognitive “sweet spot”, but also a relational
and motivational one, where both ability and willingness to engage
are actively constructed.

Drawing on these traditions, we define the PLZ as the intersec-
tion of cognitive reachability (the c-ZPD) and motivational readi-
ness (the ZPM). The distinction betweenwhat a learner can do (their
state relative to the c-ZPD) and their willingness to productively
engage (their state relative to the ZPM) is critical, as it highlights
the limitations of treating learning as a purely cognitive problem.
As conceptualized in Table 1, their overlap in Quadrant 1 defines
the PLZ: the true “sweet spot” where learners are both cognitively
capable and prepared to engage behaviorally, cognitively, and af-
fectively. At the same time, Table 1 illustrates that the appropriate
scaffolding action depends on the learner’s specific state. While
intervention is always holistic, its primary focus must adapt to the
most immediate barrier. This barrier might be purely cognitive (a
knowledge gap), or it might be a breakdown in engagement—for
instance, a reluctance to invest behavioral effort or apply deep cog-
nitive strategies. Operating within the PLZ is therefore the core
design principle for effective educational AI.

3.2 The AI-Specific ZPM: A Control Mechanism
for the Convenience Paradox

While the concept of a motivational ZPD has been previously ex-
plored in teacher-student contexts (e.g., Brophy [12], Ilgen et al.
[48]), this paper is the first to formalize and operationalize it as
the ZPM specifically for the unique design tensions of AI-mediated
learning, where the risk of frictionless convenience presents an
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Task is in the c-ZPD (Learner can do it with
help)

Task is NOT in the c-ZPD (Learner cannot
do it, even with help)

Task is in the ZPM
(Learner is motivated)

1. The Productive Learning Zone (PLZ): The
learner is both willing and able. This is the sweet
spot for growth. Action: Provide integrated
scaffolding with a primary focus on the cognitive
task (e.g., hints, feedback, worked examples).

3. The Frustration Zone: The learner is willing
but unable. They try but fail, leading to
frustration and loss of confidence. Action:
Simplify the task to bring it into the c-ZPD.

Task is NOT in the ZPM
(Learner is unmotivated)

2. The Motivational Barrier: The learner is
able but unwilling. They have the potential to
learn but refuse to engage. Action: Provide
scaffolding with a primary focus on motivation
(e.g., reframing the task, goal-setting, restoring
agency)

4. The Dead Zone: The learner is both
unwilling and unable. The task is irrelevant and
too difficult. No learning will occur. Action:
Abandon or completely redesign the task.

Table 1: The Dual Zone of Proximal Development (DZPD) framework, which defines the Productive Learning Zone (PLZ) as the
target state in Quadrant 1. The core design principle for effective educational AI is to guide and maintain the learner within
the PLZ.

unprecedented challenge. Unlike relational models framed around
human supervision, the AI-specific ZPM is defined by a critical
design tension. On one side lies excessive convenience: if AI pro-
vides answers too quickly or completely, learners may bypass effort,
short-circuiting both cognitive and motivational growth. On the
other side lies excessive challenge: if AI support is too sparse or
opaque, learners may disengage in frustration.

ZPM defines the narrow corridor where AI assistancemust be cal-
ibrated: support should lower barriers enough to invite engagement,
while leaving sufficient productive struggle to sustain motivation
and deepen understanding. This transforms the ZPM from a pas-
sive diagnostic concept into an active design control surface for
AI systems. Its role is to ensure that learners remain inside the
PLZ, thereby preserving their cognitive sovereignty—the capacity
to extend one’s mind with AI while retaining essential skills of
critical thinking and self-regulation. For designers, this specifies
the levers through which this balance can be enacted: calibrating
challenge levels, embedding motivational scaffolds, and providing
explainable feedback that attributes progress to effort and strategy
rather than opaque system outputs.

3.3 Consistency with Established Motivational
Theories

In situated expectancy-value theory (SEVT), a learner’s choices—
such as the choice to invest effort or persist—depend on their ex-
pectancy and task value beliefs (which include perceived costs) [33].
From this perspective, the PLZ represents the region where this
motivational calculus is most favorable: the zone where a learner’s
expectancy for success and the perceived value of the task are high
enough to outweigh the cost of effort, leading to the choice to sus-
tain engagement. In SDT, intrinsic motivation and self-regulation
are maximized when autonomy, competence, and relatedness needs
are supported [57]; the PLZ integrates these needs as precondi-
tions for remaining “inside” the zone. In social cognitive theory
(SCT), self-efficacy and self-regulation are central [8]; the PLZ is

intended to capture the balance where efficacy beliefs and regu-
latory resources align with task demands. In achievement goal
theory (AGT), mastery-oriented goals and contextual cues guide
motivation [35]; the PLZ situates mastery orientation within a
broader framework that accounts for both cognitive readiness and
motivational willingness. Finally, in attribution theory, persistence
depends on causal beliefs about success and failure [92]; the PLZ is
designed to underscore the importance of attributions that sustain
willingness to engage even when challenges occur.

In our use, SEVT specifies the entry conditions for the ZPM: en-
gagement becomes a viable option when learners’ expectancy for
success and perceived task value jointly outweigh perceived costs
[12, 33]. This is precisely the region where the Convenience Para-
dox can derail learners toward low-effort shortcuts, even though
the motivational calculus would otherwise support deeper engage-
ment. SDT then specifies the maintenance conditions for staying
in the ZPM by emphasizing the ongoing satisfaction of autonomy,
competence, and relatedness needs [57]. Together, SEVT and SDT
thus define both when the ZPM “opens” and what it takes to re-
main inside it, motivating the next step where we operationalize
these needs and value–expectancy signals as real-time levers in
DZPD-aware AI.

While all these theories offer powerful lenses for understanding
the PLZ, our framework relies most directly on the combination of
SEVT and SDT. Following expectancy–value accounts of motiva-
tion [12, 33], SEVT guides how a DZPD-aware AI infers whether a
learner is likely to enter the PLZ/ZPM at all by estimating whether
perceived value and expectancy are high enough, relative to cost,
for deep engagement to be chosen over low-effort alternatives. Both
self-report data and behavioral traces can be used for this purpose.
SEVT and SDT together give us the main tools for putting the
framework into practice in interaction design. SDT’s three basic
psychological needs—autonomy, competence, and relatedness—and
SEVT-informed, value-enhancing messages (e.g., “Why do I need to
do this?”) function as direct, tunable levers for real-time adaptation
(see Figure 1). This is a distinctly AI-centric approach: whereas a
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Figure 1: The Dual Zone of Proximal Development (DZPD) framework, which positions the Productive Learning Zone (PLZ) at
the intersection of cognitive status (x-axis, ZPD-centered) and motivational readiness (y-axis, ZPM-centered). The red circle
marks the learner’s current state: cognitively within the ZPD but at risk of low motivation. Arrows represent the three Self-
Determination Theory (SDT) needs as regulatory forces: Relatedness (vertical) increases motivational readiness independent of
cognitive status, while Autonomy and Competence not only strengthen willingness to invest but also promote mastery gains
(slight rightward pull). Together these needs can stabilize the learner within the PLZ. Consolidation processes (knowledge
stabilization through generative activities) are not depicted as an axis but are described in the text.

human teacher fosters these motivational conditions intuitively,
a DZPD-aware AI can be engineered to explicitly support them
through its dialogue and actions. For example, the AI can be de-
signed to infer a dip in the “Dialogue Initiative Ratio” (a proxy for
declining autonomy) and trigger system behaviors that (1) cede the
generative role back to the learner and (2) provide value-enhancing
messages about the importance and relevance of the material to
be learned. In doing so, SEVT- and SDT-based principles are trans-
formed from abstract psychological constructs into concrete, ma-
nipulable inputs for the AI’s adaptive engine.

3.4 Operationalizing the PLZ with Obligatory
Generativity and Responsibility (OGR)

3.4.1 Overarching Principle: Obligatory Generativity and Responsi-
bility. The imperative for designing systems that compel generative
engagement is not new. Pioneering work like Conati and VanLehn’s
SE-Coach [19], for instance, demonstrated that AI tutors can suc-
cessfully scaffold themetacognitive skill of self-explanation, moving
learners from passive to active processing. Such systems provided
a powerful proof-of-concept for how AI can resist passive learning
by prompting for deeper cognitive work.

However, the modern challenge highlighted by the Convenience
Paradox—the constant availability of fully synthesized answers—
requires a more robust and holistic design principle. It is no longer
sufficient to merely invite effortful engagement; we must design
systems specifically engineered to anchor learners within their PLZ,
the state where they are both cognitively ready (c-ZPD) and moti-
vationally willing (ZPM) to learn. This requires that the interaction
itself makes deep engagement not just possible, but obligatory and
directed by a clear sense of responsibility.

To this end, we propose an overarching design principle: Obliga-
tory Generativity and Responsibility (OGR). OGR operationalizes
this imperative by structuring interactions to encourage learners
to engage in generative work—the effortful cognitive acts of ex-
plaining, justifying, constructing, and critiquing. This focus on
human-led generative work directly answers urgent calls from
both learning scientists and industry leaders, who identify critical
thinking and the ability to evaluate and build upon AI outputs as
paramount skills for the future workforce [6, 29, 39]. Crucially, OGR
embeds this generative work within a purposeful social or creative
context that establishes responsibility for that knowledge, whether
towards an agent, a peer, or a broader audience. It posits that a
learning setting designed with OGR is intended to demand both
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the cognitive engagement needed to operate in the c-ZPD and the
motivational buy-in to sustain the ZPM, thus stabilizing the PLZ.

The three roles of AI learning companions that we focus on—
Teachable Agents, Collaborative Companions, and Creative Co-
Creators—are archetypical instantiations of this OGR principle.
While systems like the SE-Coach masterfully scaffold the “genera-
tivity” component, these archetypes add the “responsibility” layer—
a social contract that transforms a metacognitive exercise into a
meaningful act of teaching, collaborating, or creating. They are not
the only ways to stabilize learning in the PLZ, but they powerfully
illustrate how OGR can be realized in practice.

3.4.2 Teachable Agents. Research on “learning by teaching” has
long demonstrated that students benefit when they are placed in the
role of explaining concepts to others [78]. Classical systems such as
Betty’s Brain [10] operationalize this principle by requiring learners
to instruct an artificial protégé. The protégé effect—where students
exert more effort and regulate their learning more carefully when
they are responsible for teaching—has been consistently observed
in empirical work [14].

Recent advances in LLMs have transformed the design of Teach-
able Agents. Studies show that LLM-based agents such as TeachYou
and AlgoBo significantly increase knowledge-building conversa-
tional density [51] and can adapt across domains without requiring
extensive rule-based engineering. Controlled experiments confirm
measurable gains in learning outcomes, including higher post-test
scores and reduced cognitive load [68]. These improvements align
with the learning-by-teaching framework by fostering metacogni-
tion and motivation.

Contribution to DZPD: Teachable Agents compel learners to
externalize knowledge in structured ways, activating both their c-
ZPD (by engaging with concepts just beyond their current mastery)
and their ZPM (by fostering responsibility and a sense of compe-
tence). By simulating realistic knowledge gaps and misconceptions,
they illustrate how the OGR prevents passive shortcut consumption
and reinforces motivational scaffolding.

3.4.3 Collaborative Companions. Collaborative learning has ro-
bustly been shown to enhance engagement, persistence, and social
motivation [30, 53]. AI-driven companions extend this tradition
by assuming peer-like roles in turn-taking dialogues, co-problem
solving, and mutual scaffolding [55]. To sustain motivation, it is
crucial to avoid over-dominance by the AI, which can diminish
autonomy [46].

Recent studies confirm these dynamics. Hu, Hsieh, and Salac [47]
demonstrate that AI learning companions improve self-regulation
and information literacy, while multi-agent approaches such as
MAIC deploy specialized AI peers (teachers, questioners, creative
sparkers, note-takers) to diversify interaction modes. Interaction
studies with university students show that different engagement
styles (active questioners, responsive navigators, and lurkers) all
can lead to comparable learning outcomes, suggesting that adaptive
companions can flexibly meet individual needs [43].

Contribution to DZPD: Collaborative Companions generate
social presence and accountability, sustaining motivation as cog-
nitive demands increase. By situating the learner in a peer-like
relationship, these systems operationalize OGR in a social mode,

strengthening both competence and relatedness while preventing
over-reliance on AI as a provider of ready-made answers.

3.4.4 Creative Co-Creators. Motivation is a central driver of cre-
ativity [3]. Research in the LLM era shows that AI can act as a
genuine creative partner, supporting ideation, iteration, and sense-
making [22, 59, 66, 76]. Recent systematic reviews confirm that
co-creative AI enhances student creativity by acting as facilitator,
co-creator, or autonomous generator, depending on the degree of
human agency preserved [86].

Experimental evidence is strong: students collaborating with
generative AI tools (e.g., ChatGPT, MidJourney, Runway) in digital
storytelling achieved large gains in collaborative problem-solving
and creativity dimensions, with a reported effect size of 1.18 [86].
These findings suggest that when properly framed, co-creative
AI supports ownership, experimentation, and deeper engagement
rather than shortcut use.

Contribution to DZPD: Creative Co-Creators expand the mo-
tivational landscape by activating curiosity and autonomy, directly
linking OGR with exploratory learning. They foster both the com-
petence dimension (through iterative feedback) and autonomy
(through open-ended exploration), enabling learners to internalize
creative processes instead of outsourcing them to the AI.

3.4.5 Beyond Archetypes: Alternative OGR Methods. While Teach-
able Agents, Collaborative Companions, and Creative Co-Creators
are powerful illustrations, they are not exhaustive. Other designs
also implement OGR and support SDT-regulation, for example:

• AI-orchestrated Peer Review: accountability through critique
and revision; fosters autonomy (choice of revisions), com-
petence (criteria-based feedback), and relatedness (social
exchange).

• AI-Fact-Checking and Red-Teaming: learners must critique
AI outputs, preventing shortcut use while supporting auton-
omy (critical stance) and competence (analytical rigor).

• Learner-Generated Questions and Assessments: students
construct exam items; enhances autonomy (choice of focus),
competence (taxonomy-based structuring), and relatedness
(shared pool).

• Public Portfolios or Artifacts: responsibility to a real audi-
ence; supports autonomy (format choice), competence (iter-
ation), and relatedness (audience and peer recognition).

• Learning Contracts andAI Coaching: structured self-regulation;
supports autonomy (self-commitment), competence (achiev-
able steps), and relatedness (coach-like interaction).

3.4.6 Synthesis. Across roles and methods, a consistent pattern
emerges: OGR designs, when coupled with SDT regulation, pre-
vent learners from slipping into passive shortcut use. Instead, they
anchor learners in the PLZ, where cognitive scaffolding (c-ZPD)
and motivational scaffolding (ZPM) intersect. Teachable Agents,
Collaborative Companions, and Creative Co-Creators thus serve as
illustrative archetypes of a more general design principle that em-
phasizes generativity, responsibility, and motivational alignment.
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Principle Teachable Agents Collaborative Companions Creative Co-Creators

P0: Diagnose Before
Prescribe

AI elicits a concept map or initial
explanation from the learner to sur-
face their prior knowledge and mis-
conceptions.

Companion begins with reflective
prompts (“What’s your plan?”) to
gauge the learner’s strategy and
confidence.

Muse begins by asking about cre-
ative goals and constraints (tone,
key message) before co-generating
content.

P1: Dynamic Role Reci-
procity

Agent feigns specific, plausible
knowledge gaps, forcing the learner
into the “expert” role to correct or
explain.

Companion cedes the generative
role on a key sub-task, positioning
the learner as the leader.

Muse generates a clichéd or flawed
starting point, prompting the
learner to improve it.

P2a: Constrained Gen-
erativity

Goal is a clear, bounded task
(“Teach me bubble sort”).

Shared, well-defined project (“Let’s
complete this slide on evapora-
tion”).

Joint creative project (“Let’s co-
draft a storyboard”).

P2b: Productive Fric-
tion

Protégé simulates misconceptions,
forcing iterative explain–revise–
correct cycles.

Companion introduces counterar-
guments or confusion, escalating to
hints only if needed.

Muse introduces creative con-
straints or counterarguments to
deepen exploration.

P3: Mandated Articula-
tion

Agent consistently asks “why?” to
force learner to justify reasoning.

Companion prompts “walk me
through your thinking.”

Muse asks for creative rationale be-
hind choices.

P4: Competence-
Supportive Feedback

Agent demonstrates flawed result
instead of saying “You’re wrong.”

Companion frames discrepancies
as a shared puzzle.

Feedback highlights strengths and
process growth opportunities.

Table 2: Mapping of design principles (P0–P4) to the three archetypes of AI learning companions.

4 Strategies for Building Fortified Minds
Through AI Learning Companions

We now distill the framework’s logic into an actionable toolkit for
HCI practitioners. To make our framework actionable, we translate
it into a set of principles for pedagogical interaction design—that is,
the design of the moment-to-moment dialogue between a learner
and an AI system in a way that is guided by established instruc-
tional theory. We present this as a prescriptive, hierarchical archi-
tecture of actionable design principles (P0-P4) that operationalize
our overarching OGR directive. This architecture begins with a cru-
cial diagnostic prerequisite (P0) and is followed by a set of tactical
principles (P1-P4) for structuring motivation-aware interactions.
Together, these principles provide a clear guide for creating AI-
based learning companions that move beyond single examples to a
robust and generalizable design pattern.

4.1 Framework: Guiding Principles for
DZPD-Aware AI Scaffolding

The successful implementation of AI companions like Teachable
Agents, Collaborative Companions, and Creative Co-Creators de-
pends on a set of core design principles. These principles opera-
tionalize the central directive of our framework—“AI should keep
learners in both zones”—by aiming to ensure every interaction
is calibrated to both the learner’s ZPD and their ZPM. Taken to-
gether, they provide a practical architecture for implementing our
overarching principle of OGR. They achieve this by systematically
supporting the learner’s psychological needs for autonomy, com-
petence, and relatedness, as defined by SDT. The following set of
principles details this architecture. To provide a clear overview,
Table 2 maps each of the following principles to its concrete instan-
tiation across the three archetypes.

Principle 0: Diagnose before prescribe. AI systems must first diag-
nose the learner’s current motivational state before offering sup-
port. This foundational step enables targeted interventions rather
than one-size-fits-all approaches. The diagnostic process distin-
guishes between two primary motivational challenges grounded
in expectancy-value theory [13]: expectancy-related problems (the
learner doubts their ability to succeed) and value-related problems
(the learner doubts the worth of the task). Expectancy problems
manifest through linguistic markers of helplessness or perfection-
ism (e.g., "I can’t do this"; excessive frustration over minor errors),
while value problems emerge through disengagement signals and
challenges to task relevance (e.g., "why do I have to learn this?").
Drawing on conversational logs and behavioral patterns, this di-
agnostic step is operationalized through existing natural language
processing techniques including sentiment analysis, emotion detec-
tion, and dialogue act classification. Validated motivational assess-
ments (students’ self-report data) will be used to supplement and
check the validity of verbal and behavioral trace data. As shown
in Table 2, different interaction patterns serve different diagnosed
needs—Teachable Agents for expectancy problems, creative co-
creation for value problems. This diagnostic prerequisite enables
DZPD alignment by ensuring motivational scaffolds address the
specific barrier to engagement.

Principle 1: Dynamic Role Reciprocity. The AI’s role is not fixed;
it must dynamically adjust its own apparent knowledge and capa-
bilities in response to the learner’s performance to create optimal
challenges. The AI acts as a reciprocal partner whose behavior is
designed to ensure the learner remains the "more knowledgeable
other" in a key area. This principle directly stabilizes the PLZ by
calibrating task difficulty to keep the learner within their c-ZPD.
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This successful act of teaching or correcting the AI is a powerful dri-
ver for the ZPM, as it reinforces the learner’s sense of competence
and autonomy. As shown in Table 2, this can be instantiated by a
Teachable Agent feigning a plausible misconception or a Creative
Co-Creator generating a flawed starting point for the learner to
improve.

Principle 2a: Constrained Generativity through Goal-Oriented Sce-
narios. The interaction must be framed within a clear, purpose-
ful scenario that makes generative engagement the default and
most natural path forward. This constraint counters the ambiguity
of open-ended prompts and establishes clear responsibility. Goal-
oriented scenarios provide cognitive scaffolding (c-ZPD) by defining
the problem space into a manageable task. Critically, this is the core
implementation of OGR, obliging the learner to generate, explain,
or create, which provides the motivational buy-in (ZPM) and fosters
relatedness through a shared mission. As detailed in Table 2, this
is achieved through explicit goals, such as teaching an agent an
algorithm or co-creating a specific artifact.

Principle 2b: Productive Friction with Graduated Support. Rather
than minimizing challenge, the AI system should introduce "desir-
able difficulties" by intentionally calibrating the cognitive costs of
the task, while managing frustration through graduated support.
This principle is key to building resilience by actively regulating
the learner’s perceived effort cost to a productive level—not so low
that learning is shallow, and not so high that it leads to frustration.
The graduated support serves two functions: it provides cognitive
assistance to manage the immediate task difficulty, and it provides
affective support to manage the ego cost of struggle, framing chal-
lenges as opportunities rather than failures. This balance ensures
that challenge leads to growth rather than disengagement. Table
2 illustrates how this can be achieved by simulating misconcep-
tions, employing confusion-resolution cycles, or requiring iterative
revisions of AI-generated drafts.

Principle 3: Mandated Articulation of Process and Rationale. The
AI must consistently prompt the learner to externalize their think-
ing, demanding not just an answer but also the underlying reason-
ing. This makes the learner’s cognitive process an explicit part of
the interaction.

This act of self-explanation is a classic method for inducing
cognitive activation; it forces the learner into deliberate, reflec-
tive reasoning and is a powerful tool for knowledge consolidation
[16]. From a motivational standpoint (ZPM alignment), this is a
form of "soft" OGR; by centering the learner’s unique thought pro-
cess, it reinforces their autonomy and competence in a supportive,
non-judgmental way. The archetypes in Table 2 demonstrate this
through consistent "why?" prompts or requests to "walkme through
your thinking."

Principle 4: Fostering Competence and Value through Process-Oriented
Feedback. The AI’s feedback must be designed to preserve motiva-
tional resilience by supporting both the learner’s sense of compe-
tence and their perception of the task’s value. Instead of delivering
binary right/wrong judgments, it should support competence by
focusing on the learner’s process, acknowledging their effort, and
providing forward-looking scaffolds to guide self-correction. Cru-
cially for the ZPM, the feedback must also reinforce the value of the

effort. This can be achieved by connecting the task to the learner’s
stated goals (utility value), highlighting an interesting or surprising
outcome of their work (interest value), or framing the skill they
are developing as an important personal asset (attainment value).
This dual focus on competence and value is essential for preventing
the demotivation that comes from failure and for reinforcing the
learner’s choice to invest in a worthwhile endeavor. As seen in the
examples in Table 2, this is often achieved by framing errors as a
shared puzzle to be solved together, reinforcing the AI’s role as a
supportive partner.

4.2 Instantiating the Principles: Archetypes and
Design Patterns

Furthermore, these principles can guide the creation of new, sophis-
ticated interaction models. For example, a Dual-Agent Teachable
System could directly operationalize OGR and the DZPD. In such a
system, a learner’s primary task would be to teach a concept to a
public-facing ’Protégé’ agent, which enforces OGR by simulating
plausible misconceptions based on the learner’s input. Working in
parallel, a private ’Scaffolder’ agent would monitor the learner’s
interaction patterns (e.g., response latencies, repeated errors) to
keep them within their c-ZPD, offering Socratic hints through a
confidential channel. Such a design elegantly separates the motiva-
tional pressure of teaching from the cognitive support of tutoring,
providing a concrete architecture for an DZPD-aware system.

4.3 Technical Feasibility of the Diagnostic
Framework

The diagnostic capabilities required for P0 are well-established
through both classical and recent transformer-based approaches.
Classical methods demonstrated that sentiment analysis and di-
alogue act classification can detect learner confidence patterns
[36], while behavioral log analysis enables automated motivational
state detection [7, 23]. Supplemental self-report data with validated
motivational scales based on SEVT and SDT will support the inter-
pretation of these data.

The advent of large language models has dramatically enhanced
these capabilities. Recent work shows that GPT-4 and other LLMs
can effectively analyze classroom dialogues to detect patterns and
trends in educational interactions with high inter-coder reliability
compared to human coders [65]. Psychometric evaluations demon-
strate that LLMs possess emotional intelligence capabilities that
enable understanding of complex emotional scenarios and human
affective states [90, 91], while fine-tuned transformer models like
BERT achieve substantial improvements in emotion recognition
within conversational contexts, specifically detecting confusion and
frustration in dialogue [74]. A meta-analysis of 69 experimental
studies confirms that ChatGPT interventions demonstrably im-
prove affective-motivational states and reduce mental effort in edu-
cational settings [27], providing empirical validation for real-time
motivation diagnosis.

For future systems, comprehensive reviews demonstrate that
deep learning approaches combining dialogue analysis with multi-
modal inputs (including eye-tracking and facial expressions) achieve
robust emotion detection in educational contexts [1, 31, 42].
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The implementation pathway for P0 diagnostics involves three
technical components:

(1) Expectancy-related detection through sentiment analysis
identifying negative self-talk patterns and behavioral logs
revealing rapid guessing or giving-up behaviors;

(2) Value-related detection through intent classification identify-
ing utility challenges and dialogue act classification revealing
low ratios of curiosity-driven versus procedural questions;
and

(3) Integrated decision logic that synthesizes these signals into
actionable diagnostic categories.

This technical foundation transforms P0 from aspiration into a
concrete, implementable research program.

5 A Heuristic Toolkit for Designing and
Evaluating DZPD-Aware Systems

To complement these design principles, this section provides a
heuristic toolkit of measurable indicators for evaluating whether
DZPD-aware systems are working as intended. Critically, these
indicators are designed to move beyond surface-level metrics (e.g.,
completion time, score) to capture the deeper dynamics of gener-
ative and motivationally resilient learning. We position these not
as validated instruments, but as heuristic, computable behavioral
proxies that can be used to empirically test whether a system—such
as a future prototype of our Dual-Agent exemplar—is successfully
maintaining learners in the DZPD.

1. Frequency of Learner Explanations vs. Agent Prompts. This
metric measures the proportion of dialogue turns in which the
learner formulates a generative statement (e.g., an explanation, a
teaching step) versus passively receiving information.

• Principle Alignment: A direct measure of P3 (Mandated
Articulation) and P1 (Dynamic Role Reciprocity).

• Archetypal Context: Producing explanations in conver-
sational tutors like AutoTutor [40], articulating teaching
steps in Betty’s Brain [10], or proposing ideas in Creative
Co-Creators [85].

• DZPD Connection: Explains cognitive edge (ZPD) and mo-
tivational willingness (ZPM).

2. Dialogue Initiative Ratio (Learner vs. Agent). Tracks learner
agency by comparing student-initiated utterances to agent-initiated
prompts.

• Principle Alignment: Measures P1 (Dynamic Role Reci-
procity).

• Archetypal Context:Mixed-initiative conversational bal-
ance in advanced tutors [40].

• DZPD Connection:High learner initiative = autonomy and
stronger learning gains.

3. Scenario-Alignment Ratio (On-Task Action Ratio). Assesses the
ratio of learner actions relevant to the scenario goal versus off-task
actions.

• PrincipleAlignment: Primarymeasure for P2a (Constrained
Generativity).

• Archetypal Context: Detects “gaming the system” [7].

• DZPD Connection: High ratio = strong buy-in and task
engagement.

4. Confusion-Recovery and Affective Transition Cycles. Monitors
transitions such as ENG→ CON→ ENG.

• Principle Alignment: Direct evidence of P2b (Productive
Friction) and P4 (Competence-Supportive Feedback).

• Archetypal Context: Documented in Betty’s Brain [10].
• DZPD Connection: Successful recovery builds resilient
competence (ZPM).

5. Scaffold Fading Rate / Support Dependency Over Time. Mea-
sures how quickly AI-provided support diminishes as learners gain
competence.

• Principle Alignment: Tracks P2b (Productive Friction) and
P0 (Diagnose Before Prescribe).

• Archetypal Context: Adaptive support and scaffold with-
drawal.

• DZPD Connection: Shows expansion of independent ca-
pacity (c-ZPD) and motivation (ZPM).

6. Persistence Through Failure. Tracks percentage of learners re-
engaging after failure.

• Principle Alignment: Holistic measure of ZPM alignment
(P4 + P2b).

• Archetypal Context: General outcome metric across all
systems.

• DZPD Connection: Proof of motivational scaffolding effec-
tiveness.

7. Strategy Monitoring Frequency. Detects how often learners
verbalize strategies after challenges.

• Principle Alignment: Reflects P3 (Mandated Articulation)
and P0 (Diagnose Before Prescribe).

• Archetypal Context:Measures metacognitive reflection.
• DZPD Connection: Expression of autonomy and owner-
ship.

8. Shortcut-Use Rate (Learner vs. System). Tracks frequency of
solution-seeking shortcuts (“just tell me,” copy-paste, exploiting
hints).

• PrincipleAlignment:Negativemeasure for P2a (Constrained
Generativity) and P2b (Productive Friction).

• Archetypal Context: Captures “gaming the system” [7].
• DZPD Connection: High rate signals exit from DZPD due
to c-ZPD/ZPM mismatch.

6 Illustrative Evidence & Feasibility probe
Rather than a summative evaluation, we provide illustrative evi-
dence that the DZPD framework and the OGR principle are oper-
able and theoretically tractable. Our strategy has two parts: first,
synthesizing empirical precedents from prior systems as indirect
validation of our design levers and indicators; second, presenting
a modest feasibility probe that implements OGR and applies our
heuristic indicators. The probe builds on the Dual-Agent Teach-
able System (§ 4.2), showing how a DZPD-aware interaction can
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be prototyped and observed. Together, these strands do not estab-
lish causal effects but instead illustrate feasibility, clarify design
patterns, and specify testable propositions for future HCI research.

6.1 Indirect Empirical Precedents
As outlined in Section 3.4, our framework is instantiated through
design archetypes such as Teachable Agents, Collaborative Compan-
ions, and Creative Co-Creators. These archetypes are not hypothet-
ical: prior systems provide converging empirical precedents that
demonstrate the mechanisms emphasized in our design levers and
indicators. For example, studies of Teachable Agents (e.g., Betty’s
Brain, SimStudent) show that requiring learners to articulate expla-
nations increases generative effort and self-regulation—directly
mapping to Indicator 1 (Learner Explanations) and supporting
the OGR principle. Similarly, research on collaborative learning
companions and mixed-initiative dialogue systems (e.g., AutoTu-
tor [41, 73], PeerLogic) documents productive confusion cycles
and shared initiative, aligning with Indicators 2 and 4. Work on
co-creative systems in programming and writing highlights the
balance between autonomy and scaffolded support, pointing to
Indicators 5 and 8.

Taken together, these strands of evidence operate as indirect
empirical confirmation of our framework. They show that the mech-
anisms emphasized in DZPD and OGR—generativity, responsibility,
shortcut regulation, and motivational scaffolding—have already
been observed across diverse systems and methods. Our contri-
bution is to integrate these isolated effects into a coherent HCI
framework, specify them as computable indicators, and tailor them
to the distinctive challenges of generative AI.

6.2 Design Probe: Feasibility of OGR in Practice
Unlike Section 6.1’s indirect validation via prior systems, here we
report a design probe (N = 8) intended as a proof-of-concept for op-
erationalizing OGR and our heuristic indicators in a new domain; it
is not a systematic evaluation or a comparative test of effectiveness.

We implemented a prototype of the Dual-Agent Teachable
System described in Section 4.2 using the SillyTavern1 framework
due to its adjustability and focus on multi-character interactions
together with a self-hosted AWQ quantized version of Mistral-
Large-Instruct-2407 model2 [64, 70]. Participants were asked to
teach a “Protégé” chatbot the concept of finite differences, includ-
ing their role in approximating derivatives, approximation behavior,
and stability. In the background, a second “Scaffolder” chatbot was
present to monitor the interaction, consistent with our design pat-
tern. Pre-questionnaires revealed a moderate level of self-reported
prior knowledge in analysis and numerical methods but little or
no familiarity with finite differences. Several also reported regular
use of AI for explanations or exercises. Building on participants’
prior knowledge, we designed a 30-minute “learning phase” during
which they watched a tutorial video on finite differences. The video
introduced the most essential concepts to provide foundational
understanding and to ensure that the subsequent task was situated
within the participants’ c-ZPD.

1https://github.com/SillyTavern/SillyTavern
2https://huggingface.co/TechxGenus/Mistral-Large-Instruct-2407-AWQ

A descriptive visualization of post-task responses in Figure 2
shows responses skewed toward agreement that the discussions
were motivating, that participants had to engage intensively and
think for a long time to answer questions, and that this effort im-
proved their own understanding; disagreement predominated for
feeling overwhelmed; and perceptions of an overly “watchful” su-
pervisor were low. Many also agreed they learned more than with
passive AI use, consistent with OGR’s goal to privilege generativity
over answer-taking. These patterns are descriptive, not inferential,
and are presented to illustrate feasibility and signal direction rather
than to claim effects.

Questionnaire triangulation (N = 8). Self-reported data from
the feasibility probe Figure 2 can be directly mapped to the heuristic
indicators proposed in Section 5, showing their practical observ-
ability.

• Strong agreement with statements such as “I had to engage
intensively” and “I had to think for a long time” aligns with
Indicator 1 (Learner Explanations), reflecting the sys-
tem’s ability to compel generative effort.

• Low agreement with “I felt overwhelmed” corresponds to
Indicator 4 (Confusion-Recovery Cycles), suggesting
the probe produced “desirable difficulty” and “productive
friction” rather than frustration.

• Perceived added value (“I learned more than if I had simply
used AI on my own”) supports Indicator 8 (Shortcut-Use
Rate), highlighting recognition of the generative process
over passive answer-seeking.

• Low perception of being “watched” relates to Indicator 5
(Support Dependency), indicating unobtrusive scaffolding
that enables autonomy and fading support.

Together, these mappings illustrate that the proposed heuris-
tics are not only conceptual but traceable in user experience data,
underscoring the empirical tractability of a DZPD-aware system.

Summary of the Feasibility Probe.While the probe was de-
liberately modest in scope—with a small sample, brief exposure,
and reliance on self-report—it provides hypothesis-generating sig-
nals rather than causal claims. More importantly, it demonstrates
how our heuristic indicators can be applied in practice. In doing
so, it closes the loop from the Dual-Agent design pattern (§4.2) to
observable indicators, illustrating the empirical tractability of the
framework and pointing toward directions for systematic evalua-
tion.

7 Discussion and Future Work
7.1 Main Contributions and Synthesis
This paper advances a theory-and-design perspective onAI-supported
learning. We introduced the Dual-ZPD framework (DZPD), artic-
ulated through the Productive Learning Zone (PLZ), and opera-
tionalized it via the OGR principle, design principles (P0–P4), and
heuristic indicators. These elements together provide both a con-
ceptual lens for understanding how cognitive and motivational
scaffolding interact, and a practical toolkit for designing and study-
ing DZPD-aware systems.

Section 6 demonstrated the illustrative operability of these ideas:
precedents from prior systems converge on our proposed mech-
anisms, and the feasibility probe showed how indicators can be
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1 2 3 4 5 6

I found the discussions motivating.
I had to engage intensively with the learning 

 content in order to answer the student's questions.
The student asked many questions I did not anticipate.

I had to think for a long time about the 
 questions in order to find good answers.
Thinking about the questions helped me 

 understand the topic better myself.
The student's questions overwhelmed me.

The supervisor felt too watchful.
I feel that I learned more than if 

 I had simply used AI on my own.

3 4 1

2 2 4

3 4 1

2 3 2 1

1 1 3 3

5 1 2

5 3

3 5

Strongly disagree Disagree Rather disagree Rather agree Agree Strongly agree

Figure 2: Results of our questionnaire (N = 8, 6-point Likert scale) after participating in the feasibility probe. In addition to the
proportions of responses, we compute a mean and standard deviation by converting all possible choices into equally-spaced
numerical values between 0 (Strongly disagree) and 5 (Strongly agree) and visualizing these results as black error bars for each
question.

applied in practice. This creates a throughline from theory (DZPD
and propositions), to design (OGR, principles, archetypes), to evi-
dence (precedents and probe).

In sum, the contributions reframe AI in education from answer
engines toward learning partners, equipping HCI with concepts,
design patterns, and testable propositions that motivate future
empirical research.

7.2 Ethics and Learner Agency
Any system designed to influence motivation must confront the risk
of becoming paternalistic or coercive. Our framework addresses
this ethical challenge directly through the OGR principle’s deep
integration with SDT. OGR avoids manipulative “nudging” by fram-
ing generative work not as a system demand, but as a meaningful
responsibility within a social context (e.g., teaching Clara), allow-
ing the learner to autonomously endorse the effortful path and
transform obligation into agency.

However, this autonomy-supportive design is not without risks.
The concept of "obligatory" engagement treads a fine line, and its
implementation requires careful ethical consideration. For exam-
ple, what are the consequences if the AI misjudges the learner’s
ZPM and introduces "productive friction" at a moment of genuine
frustration? This could lead to fatigue or premature disengagement.
Furthermore, we must ensure transparency and consent regarding
the system’s motivational goals; learners should understand why
the system is not simply providing an answer. Future work must
investigate fail-safes and learner overrides to ensure that the sys-
tem’s pursuit of generative engagement does not come at the cost
of the learner’s well-being and ultimate control over their learning
process.

7.3 Limitations
This work is presented as a theory-and-design framework, not
a summative evaluation. The indicators are heuristic rather than
validated instruments, and the design principles are scaffolds for
AI-mediated contexts, not a universal pedagogy. The framework
is conceptual, synthesizing prior research without new large-scale
user studies; to bridge this gap, we provide a heuristic toolkit (Sec-
tion 5) to support the future validation of DZPD and its principles.

On a technical level, real-time estimation of ZPM currently relies
on approximate behavioral proxies; robust implementation will
require advances in prompt engineering and multimodal sensing.
On a practical level, while the principles are designed to be general,
their application must be adapted to different domains (e.g., mathe-
matics vs. creative writing), learner populations, cultural contexts,
and neurotypes

In addition, the principle of “obligatory” engagement raises im-
portant ethical considerations. While our framework is designed
to be explicitly autonomy-supportive, any system that actively
modulates motivation must be carefully designed to avoid becom-
ing coercive or paternalistic. Future work must investigate how to
ensure these methods are equitable and empowering for all learn-
ers, and we recommend that deployments of such systems include
audits to safeguard against potential coercion.

Finally, our review of related work, while broad, is necessarily
selective. To fully situate our framework, future iterations would
benefit from deeper engagement with several key research areas,
including: (i) recent advances in motivation-aware AI tutoring sys-
tems; (ii) the application of “desirable difficulties” in AI-supported
learning contexts; (iii) learner agency in mixed-initiative educa-
tional technologies; and (iv) the interplay of intrinsic versus extrin-
sic motivation in gamified learning environments.
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7.4 Future Work
The limitations of this paper point directly toward a rich agenda
for future research and development.

The immediate priority is to enhance the empirical validation
of the DZPD framework. This involves building upon the initial
feasibility probe by extending and more rigorously testing the Dual-
Agent Teachable System described in Section 4.1 and 6.2 and further
prototype AI companions based on our design principles (e.g., an
agent embodying “Dynamic Role Reciprocity” and “Competence-
Supportive Feedback”) and testing their impact on learners. Using
the proposed indicators—such as the dialogue initiative ratio and
confusion–recovery cycles—researchers can quantitatively measure
whether these systems are more effective at fostering deep learning
and motivational resilience compared to conventional “answer-
engine” AI.

Second, the real-time operationalization of the ZPM remains a
significant technical challenge. While this paper posits that ZPM
can be inferred from "behavioral proxies," we acknowledge that
doing so reliably is a non-trivial problem. This constitutes a "black
box" that future research must address. Robust implementation will
likely require a sophisticated fusion of methods, including model-
based inference (e.g., tracking a drop in the Dialogue Initiative Ratio
as a proxy for declining autonomy) and potentially multimodal
sensing (e.g., affect detection from text or eye-tracking data to infer
frustration or disengagement). We position our heuristic toolkit
not as a final solution, but as a necessary first step in defining the
signals that such systems will need to capture.

A next step is the integration of DZPD and OGR into authentic
curricular settings. We are preparing a deployment in our under-
graduate Numerics lecture (Computer Science, 𝑁 ≈ 250), where
students may earn exercise credit by creating small teaching ap-
plications that explain a topic of their choice from recent lectures.
While this design resonates with the classic “protégé effect” of
Teachable Agents, its novelty lies in three aspects: first, motiva-
tional scaffolding is embedded directly into curricular incentives
rather than offered as an auxiliary activity; second, the setting is at
scale and embedded in a core lecture, providing a natural contrast
between OGR and non-OGR paths; and third, the analysis will focus
on motivational indicators such as persistence and shortcut use
rather than solely on cognitive gains. This study will thus extend
DZPD and OGR into authentic educational practice.

Furthermore, a particularly promising avenue for this research
is to investigate how different modalities can amplify the relational
aspects of the DZPD. For example, one could implement the AI
Protégé and Scaffolder not as text-based chatbots, but as photoreal-
istic, emotive video avatars using generative video platforms (e.g.,
Synthesia). This would allow for a much richer test of SDT’s need
for relatedness. An AI Protégé that can express genuine-seeming
confusion through its facial expressions, or an AI Scaffolder that
offers a nod of encouragement, could provide a far more powerful
motivational scaffold for the ZPM than text alone. This would move
the interaction from a purely cognitive–dialogic partnership to a
more holistic socio-emotional one, truly testing the principles of
motivation-aware design.

A significant practical contribution would be the development
of a detailed design pattern library for DZPD-aware EdTech. This

would translate our principles into concrete, reusable implementa-
tion recipes for AI engineers and learning designers. Such a library
would greatly lower the barrier to creating educational tools that
actively counter the Convenience Paradox.

Looking forward, we envision AI systems that can dynamically
and autonomously regulate a learner’s journey within the PLZ.
By integrating real-time data from multimodal sensing (e.g., eye-
tracking, facial expression analysis, speech prosody) to estimate a
learner’s cognitive load and motivational state, AI could one day
shift seamlessly between the roles of tutor, Teachable Agent, and
Creative Co-Creator, providing precisely the right form of cognitive
and motivational scaffolding at exactly the right moment. Such a
development would mark the true arrival of AI not just as a tool,
but as a genuine partner in human learning.
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