
Fast Texture Mapping for Triangle Soups using
Electrostatic Monopole Field Lines

Alexander Schier∗, Stefan Hartmann†, and Reinhard Klein‡

October 10, 2018

We present an efficient approach for the parameterization of triangle soups. Our
technique tackles the problem by first approximating the triangle soup by a watertight
2-manifold offset mesh proxy. By establishing point correspondences between the trian-
gle soup and the shape proxy by tracing electrostatic field lines in time O(kn) instead
of O(kn2), we can transfer properties computed on the surface, such as UV-coordinates
even for large input meshes. The technique can process large triangle soups by replacing
the computational intensive physical calculations by approximations developed initially for
large-scale physical simulations. Thus it is possible to decrease the time complexity of the
initial charge distribution algorithm from O(n3) to O(n). We demonstrate our method
on a multitude of challenging triangle soups and focus on the transfer of UV-coordinates
during our experiments. An intensive run-time analysis and a comparison of our results to
state of the art techniques in standard modeling tools concludes our study.

Published in Computers & Graphics, Volume 77, (Pages 140-155).
DOI: https://doi.org/10.1016/j.cag.2018.09.020

∗schier@uni-bonn.de
†hartmans@cs.uni-bonn.de
‡rk@cs.uni-bonn.de

1

https://doi.org/10.1016/j.cag.2018.09.020

1 Introduction

Surface parameterizations are essential for many different ap-
plications in computer graphics, such as texture mapping,
attribute transfer, and re-meshing. In the last three decades,
a considerable amount of individual mesh parameterization
techniques that focus on preservation of different mesh prop-
erties, like distances, areas, and angles, have been proposed
to the computer graphics community (see [26] for a detailed
introduction). Typically such algorithms require watertight
2-manifold triangle meshes and are not applicable for the pa-
rameterization of triangle soups, i.e., collections of triangles
that do not necessarily have common vertices or edges and
might have gaps or overlaps. Such mesh configurations hinder
the task of computing smooth texture mappings. However,
they are not rare. Examples are CAD objects that are com-
posed of different parts that are not necessarily connected,
see, e.g., Fig. 1, but rely on a common parameterization as
otherwise noticeable discontinuities might be present. In this
paper, we tackle the problem of computing parameterizations
for triangle soups that has received far less attention within
the computer graphics community in recent years. Having
available a 2-manifold representation of the input mesh would
allow the use of well-defined geometry processing algorithms
in order to compute different kinds of mesh properties and
even the use of existing high-quality surface parameterization
techniques. In order to achieve our desired goal, we propose
to solve the problem using two steps. First, we approximate
the shape of the triangle soup by a surface that is watertight
and 2-manifold. Such an approximation allows us to use state
of the art algorithms for surface parameterization. Second, we
establish unique point-to-point correspondences between the
triangle soup and the shape proxy. Finding a high-quality
mapping between the triangle soup and the shape proxy is
not a trivial problem and although different techniques that
establish correspondences exist, ambiguous correspondences
based on distances might be found (see Fig. 2). In our ap-
proach, we tackle the problem of finding unique point corre-
spondences by tracing field lines that originate from an elec-
trostatic monopole, i.e., the charged input mesh, towards the
shape proxy. The field lines follow a vector field that assigns
a unique direction to each point in space, eliminating ambigu-
ous correspondences by design. As the field lines eventually
will hit the surface of the shape proxy and do not intersect
each other, we can compute an injective mapping between
the triangle soup and the shape proxy.

Existing approaches such as Degener and Klein [16], that
aim for similar goals make use of dipole fields. Such fields rely
on two different charges with opposite sign to establish cor-
respondences between the triangle soup and the shape proxy.
Although dipole fields are simple to establish and can provide
a bijective mapping, they have a few significant drawbacks.
First, the complexity of tracing the field lines for k steps is in
O(k(n+m)2), while n and m being the number of faces of the
triangle soup and the shape proxy respectively. Depending on
the accuracy of the shape proxy, m might be much larger than
n and making the field line tracing procedure even more com-
putational intensive as each field line depends on the charges
of all triangles. Second, the field lines strongly depend on
the accuracy and the quality of the shape proxy and needs

to be recomputed every time the shape proxy changes. For
these reasons, we opted against a dipole field in favor of a
monopole field, i.e., we only charge the triangle soup. Such an
electrostatic monopole induces field lines that do not depend
on a surrounding object and are significantly faster to calcu-
late because they need a smaller amount of charged points
distributed in space. Wang et al. [54] propose electrostatic
monopole fields for harmonic parameterization of the space
around objects. However, the computational complexity pre-
vents the method from being used for large triangle meshes.
An indispensable requirement on monopole fields is a physi-
cally exact charge distribution, i.e., an even potential on the
surface of the object. Typically, the solution of a dense lin-
ear system provides the initial charge distribution. However,
this results in a computational complexity that is in O(n3)
and thus intractable for large triangle meshes. In contrast
to Wang et al., we compute the initial charge distribution
by leveraging techniques initially developed for large-scale
physical simulations where the charge and potential fields are
approximations, that do provide enough accuracy for estab-
lishing point correspondences and thus drastically reduce the
complexity of the initial charge distribution from O(n3) to
O(n). In particular, the contributions of our paper are:

• We introduce a technique for the transfer of arbitrary
surface properties, e.g., UV-coordinates, from a water-
tight 2-manifold shape proxy to a given triangle soup.

• We efficiently compute correspondences between a trian-
gle soup and a mesh proxy by tracing field lines from
an electrostatic monopole to the proxy surface, leverag-
ing fast multipole methods to trace field lines in O(kn)
instead of O(kn2) needed in previous work.

• We show how the complexity of computing the initial
charge distribution of the monopole can be reduced from
O(n3) in previous work to O(n) making the method ap-
plicable for large mesh objects.

Fig. 1: A gear selector model illustrates that CAD models
are composed of multiple simple parts, which do not
form a common manifold mesh and contain gaps and
overlaps.

2

Fig. 2: Left: A distance based mapping, which cannot guarantee unique point correspondences. Middle: A dipole field defines
a bijective mapping between a triangle soup and a two-sided offset mesh proxy. Right: A monopole field defines field
lines in the whole space, which provide an injective mapping to any enclosing offset mesh proxy.

2 Related Work

Our work is related to three different but related fields, which
are mesh parameterization, finding point correspondences,
and generating mesh proxies.

Mesh Proxies For our parameterization method, we need to
generate an enclosing offset mesh proxy. The generation can
be done in various ways using approaches of different com-
plexity. Wood et al. [57] generate isosurfaces from distance
volumes in a two-step approach. They start with a coarse
triangulation that provides a watertight mesh for the second
step. The second step iteratively refines the triangulation us-
ing a force-based approach that adaptively fits the mesh to
the data. Shen et al. propose a method to interpolate and to
approximate implicit surfaces from a polygon soup [50] using
a moving least-squares formulation. Cohen-Steiner et al. [13]
describe mesh proxies using variational shape approximation
and Wu and Kobbelt [58] use such a surface approximation
for structure recovery. Yan et al. [59] propose a semantic
segmentation based on the quadric fitting approach.

The method of Kazhdan et al. [27] extracts isosurfaces
from octrees and Calderon and Boubekeur [11] describe an
approach of building bounding proxies using mesh simplifica-
tion with regularization of the input shape based on asym-
metric morphological closing. The nested cages method [44]
can be used to create a set of proxy meshes, in which each
coarser triangulation completely encloses all finer ones.

Although we focus on using a simple distance-based ap-
proach, we can exploit the advantages of the techniques dis-
cussed above. As we only need to compute the field lines
once, we can reuse them to test for intersections on a set of
hierarchical proxies.

Parameterizations For surface parameterization a consider-
able amount of different techniques has been introduced (see,
e.g., [19] for a detailed introduction) with focus on different
properties of a mesh, as no parameterization can conserve all
properties like angles, areas, and edge lengths. The surveys
of [49] and [26] provide a good overview of the different ap-
proaches and algorithms that were introduced in recent years.

Common approaches include “Most Isometric Parameter-
izations” (MIPS) [24], “Angle Based Flattening” (ABF++)
[48], “As Rigid As Possible” (ARAP) and “As Similar As
Possible” (ASAP) parameterizations [34] using local-global

algorithms, and the technique for minimal metric distortion
proposed by Degener and Klein [15]. The AMIPS algorithm
by Fu et.al [21] extends the MIPS algorithm using an inexact
block coordinate descent method to avoid local minima and
provides a maximum distortion control mechanism, such that
single triangles with a significant distortion can be avoided.
Fu et al. also describe an algorithm for inversion-free map-
ping by simplex assembly [20], which disassembles the mesh
into its triangles and then optimizes for affine transforma-
tions instead of vertex positions. The reassembly is achieved
by edge constraints, which ensure that the vertices of adjacent
triangles stay connected.

Seamless parameterization have been tackled by Miles and
Zorin [37] using incremental flattening. The technique of Ra-
binovich et al. [43] uses locally injective mappings and com-
patibility constraints to achieve seamless texture mappings.

By treating the boundary of a surface patch first and con-
structing the conformal map once the boundary is known, the
Boundary First Flattening method [46] can reduce the cost
for parameterization by a factor 30 to 50 to the next-fastest
boundary-controlled method.

The Autocuts algorithm [42] approaches mesh parameter-
ization in a different way. Instead of first computing seams
and then parameterizing the individual charts, the authors
propose an energy function that jointly optimizes for seams
and a low distortion parameterization. Although by this algo-
rithm the mesh is considered as a triangle soup, connectivity
information between vertices is still necessary. In contrast,
our algorithm does not require connectivity information. In-
stead, the triangle soup is used to generate a watertight offset
mesh proxy, which then can be parameterized using any pa-
rameterization technique at hand.

Aigerman and Lipman use a generalization of Tutte em-
beddings to euclidean orbifolds in recent work [2, 3, 1], which
results in a sparse linear system for producing bijective ap-
proximations of conformal mappings. A generalization of the
Euclidean orbifold approach is the Harmonic Global Parame-
terization with Rational Holonomy (HGP) method by Bright
et. al [9], which can handle arbitrary topologies and numbers
of cone points.

Point Correspondences There are many different ap-
proaches to finding point correspondences, which often have
entirely different goals, requirements on the input, e.g., given
landmark points, and methodologies how they find the corre-

3

spondences. There are also many different metrics to measure
the quality of point correspondences. A survey of different
methods for shape correspondence can be found in [52], re-
views of different methods for mesh morphing can be found in
[29, 5], different similarity measures for shape matching are
compared in [53], and in a more recent survey [8] summarizes
trends in shape similarity assessment.

Point correspondences by flattening can be found using
Möbius voting [33]. The meshes are embedded in the com-
plex plane and Möbius transformations are computed using
three fixed landmark points to establish the correspondences
together with confidence values. G-Flattening, introduced by
Aigerman et al. [4], computes seamless bijective mappings
from charts flattened to the plane. Their technique uses an
optimization procedure which is invariant to the cuts used to
produce the initial charts.

Using heat kernel maps [39], isometries on compact man-
ifolds of any dimension and genus can be found with only
one given landmark point by utilizing the solution of the heat
equation. The Blended intrinsic maps (BIM) [28] method
combines different nearly isometric maps such as Möbius maps
and heat kernel maps to compute a mapping between two
genus zero surfaces. These maps are weighted to minimize
the error in an optimized final map. An extension of the
method for meshes of higher genus described by Sandilands
et al. [45] uses electrostatic potential isosurfaces to find genus
zero approximations of the object to be able to use a blended
map.

The Functional Maps [38] approach utilizes a map between
function spaces on two different shapes. By choosing the in-
dicator function, the functional map is a simple permutation
of the vertices, and by choosing more sophisticated bases,
the representation can be simplified and becomes more ro-
bust. A typical choice for the basis are the eigenfunctions
of the Laplace-Beltrami operator which establishes the con-
nection to the heat kernel maps approach. A detailed in-
troduction to functional maps can be found in [12]. An ex-
tension of functional maps by using the Green’s functions
of the Laplace-Beltrami operator to embed shapes into their
own function space to calculate correspondences between non-
isometric shapes with the constraint that the mapping func-
tion approximates a conformal map is given in [10].

Finally our approach is related to the texture mapping ap-
proach using dipole field lines of Degener and Klein [16] but
employs monopole fields to get more accurate results. Our
technique significantly reduces the number of charges that are
required to compute the potentials. We replace their simple
speedup heuristic of truncating the list of charges to consider
by a sound physical approximation using the fast multipole
method, which has well-known error bounds. Besides, we
avoid using a two-sided mesh proxy, because our field lines
exactly match the physical model and thus always extend
to the outside, intersecting any enclosing mesh. In a recent
paper by Barill et al. [6], another field approximation algo-
rithm based on Taylor expansion is used for fast calculation of
winding numbers of point clouds and triangle soups by using
dipoles.

3 Motivation

There is a vast amount of meshes that have highly irregu-
lar triangles and non-standard topologies. Such meshes are
typically used in game production and often occur in CAD
applications for product design. For the latter, the individual
parts are modeled using NURBS (see, e.g., [40]), and their
representations are used in spray-cast and injection-molding
production pipelines. At the same time, these CAD object
parts need to be used for product visualization. For efficient
visualization these NURBS surface are triangulated, result-
ing in highly irregular triangle meshes that are typically non-
manifold. In contrast to geometry processing, these “bad”
meshes are acceptable to be used in visualization pipelines.
Especially for visualization of such ob-
jects, e.g., the tire composed of three sur-
faces shown in the inset and the gear se-
lector shown in Fig 1, a globally consis-
tent UV-layout of a specific material is
necessary. Standard modeling tools typ-
ically provide robust mesh parameteriza-
tion techniques, but fail to handle these
type of meshes when they are composed
of multiple components (see Fig. 18).

Artists in the game and entertainment industry usually are
skilled to create nice looking models by composing and re-
shaping multiple mesh primitives, which are already similar
to the part of the mesh they are forming, but do not consider
the concept of watertight 2-manifold meshes. Such a work-
flow also results in meshes, which must be considered triangle
soups, as they often are non-continuous and non-manifold.

Our technique avoids the hard problem of creating a param-
eterization for such meshes from scratch by providing a robust
method to transfer arbitrary surface properties, e.g., a pa-
rameterization, from a manifold mesh to a triangle soup. We
generate a 2-manifold mesh proxy from the input, which can
be parameterized using one of the many existing algorithms
for high-quality parameterization of 2-manifold meshes and
use point correspondences to transfer the resulting parame-
terization onto the input triangle soup.

4 Overview

Our process consists of two pipelines which can be executed
in parallel (see Fig. 3). The first pipeline (top row) gener-
ates a watertight 2-manifold offset mesh proxy from the in-
put triangle soup and then computes a parameterization for
it. The second pipeline (bottom row) computes an electro-
static field of the input triangle soup and traces its field lines.
Afterwards, the results of both pipelines are used to assign
UV-coordinates to the triangle soup based on the point cor-
respondences found by intersecting the field lines emerging
from the vertices of the triangle soup with the triangles of
the mesh proxy.

The paper is organized as follows: In section 5 we start
by showing how we generate offset mesh proxies for triangle
soups and in section 6 we shortly discuss seam generation and
texturing for the proxy meshes using existing algorithms for
2-manifold meshes. In section 7, we describe the efficient cal-

4

Fig. 3: In our parameterization process, we create an offset
mesh proxy for the triangle soup which can be pa-
rameterized using conventional techniques as shown
in the top row. To find the point correspondences
between the triangle soup and the offset mesh proxy,
we calculate the electrostatic field and then trace elec-
trostatic field lines until they intersect the offset mesh
proxy. Then we interpolate the UV-coordinates at the
intersection points and use them to parameterize the
triangle soup (bottom row).

culation of the electrostatic monopole field and how we trace
its field lines in order to establish point correspondences on
the offset mesh proxy, what is the main result of the paper. A
post-processing step to reduce artifacts at the texture seams is
presented in section 8. We evaluate our results in section 9 by
presenting extensive benchmarks of the involved algorithms
and a comparison with standard algorithms. In section 10,
we show results for a multitude of meshes both from shape
benchmark sets and real-world models and compare our re-
sults with automatic parameterizations using the Autodesk
Maya R© 3D editor in section 11.

5 Generating an Offset Mesh Proxy

A crucial step for our technique is computing a watertight
offset mesh, which approximates the shape of the triangle
soup. For our experiments, a distance-based approach has
proven to be sufficient. However, depending on the triangle
soup, other more sophisticated algorithms might be used as
well, e.g., to reduce the number of triangles while preserving
as much detail as possible.

In our approach, we define the isosurface of the distance-
based mesh proxy as S = {~x ∈ R3|d(~x) = o}, where d(~x) is
the distance of a point ~x to the nearest point on the triangle
soup and o is the offset distance. The choice of the offset dis-
tance parameter o ∈ R+ is a trade-off between the accuracy
of the shape approximation and the needed mesh resolution.
An additional objective is to avoid capturing unwanted sur-
face noise, which can be realized by choosing a larger offset
distance or smoothing of the generated offset mesh proxy.

To triangulate the offset surface S, we use the marching
cubes algorithm [35]. By calculating the distance using a
bounding volume hierarchy (BVH) [7] of the primitives, the
complexity of one evaluation is in O(log n) and computing the
BVH has complexity O(n log n). Afterwards, the resulting
manifold mesh is decomposed into its connected components,
which are usually one outer component and one or more in-
ner components, that may vanish depending on the offset pa-
rameter. A triangle soup or mesh with multiple components
might have multiple outer components as well, if there are
gaps which are larger than 2o.

The inner and outer components of the mesh are identified
using BVHs of the mesh components to test each vertex of
a component if it is inside any other mesh component. We
discard the inner components to map the vertices only to
the outer parts of the mesh proxy. The number of intersec-
tion tests needed can be reduced by first testing if the bound-
ing boxes of the mesh components are overlapping. For non-
intersecting meshes, there is a good chance that the bounding
boxes do not intersect either and thus we can skip the mesh
intersection tests. If the bounding boxes are intersecting, we
can stop when the first mesh intersection is found, what often
only requires a few intersection tests.

Fig. 4: We generated different mesh proxies for the triangle
soup in Fig. 3. The first one fits the shape too closely
to form a single mesh and cannot be used for a com-
mon parameterization of the triangle soup. The other
mesh proxies have a larger offset parameter, what re-
sults in watertight meshes, which enclose the triangle
soup. The rightmost mesh proxy was smoothed using
Laplacian smoothing.

Fig. 4 shows different mesh proxies for the triangle soup in
Fig. 3. The first proxy tightly fits the triangle soup but still
contains some holes. Larger offset distances lead to smoother
shape approximations, which are easier to parameterize. Sur-
face noise, like in the second mesh in figure 4, can be reduced
by Laplacian smoothing [18]. Smoothing artifacts, such as
shrinking, can be compensated by choosing a larger offset pa-
rameter o and do not impose a problem on our technique.
For example in Fig. 3 we have chosen the largest offset mesh
proxy for better illustration. Typically we would choose the
tightest feasible mesh proxy, which captures the geometry of
the underlying manifold without reflecting the mesh artifacts
of the triangle soup, to get a more accurate texture mapping.

6 Texturing the Offset Mesh Proxy

Once we have generated a suitable offset mesh proxy, we can
texture it using one of the many available algorithms for tex-
turing smooth watertight meshes, e.g., [31, 25, 24, 32, 15, 48,

5

34, 21, 20, 43, 46, 42]. For our examples we used [15] for pa-
rameterization together with the segmentation algorithm in
[32] to generate the seams needed by the algorithm, but any
algorithm for parameterization of 2-manifold meshes can be
used.

For complex meshes, automatic seam generation may pro-
duce cuts that lead to visible seams on the surface. We allow
the user to adjust such cuts by an additional semi-automated
solution for interactive seam generation. The user selects a set
of vertices, which are used to generate a path along the proxy
surface using Dijkstra’s algorithm [17]. To simplify finding
paths along edges with high mesh curvature1, we use a cost
function

cost([~x, ~y]) := ‖~x− ~y‖+ α

(
1− ∆~x+ ∆~y

2 maxz(∆~z)

)
+ β‖∆~x−∆~y‖

which does not only depend on the total edge length but
also on the mesh curvature and the change of the curvature
along the path. α and β are weight parameters for the mean
curvature and the change of curvature respectively. To calcu-
late the mesh Laplacian, we use the discrete cotangent Lapla-
cian [41] of the mesh vertices. When searching paths between
a sequence of user-defined points, we assign edges used by
previous segments a weight of∞ to avoid self-intersections in
the path. In a single segment, Dijkstra’s algorithm prevents
self-intersections by design.

7 Texture Mapping by Tracing
Electrostatic Field Lines

For texture mapping between the triangle soup and an offset
mesh proxy, we create a seamless mapping between the tri-
angle soup and the offset mesh proxy by tracing electrostatic
field lines from the vertices of the triangle soup to the offset
mesh. For this purpose, we will consider the triangle soup as
a virtually charged conductor with a charge distribution re-
sulting in a constant electrostatic surface potential. We will
first have a look at the physical model and its advantages for
texture mapping and then discuss the differences between the
dipole fields used in [16] and our monopole field approach.

Afterwards, we turn to the discretization of the physical
model, define the relevant equations for triangle soups, and
show how to reduce the complexity of field line tracing and
the needed preparation step to linear time by using algorithms
initially developed for large-scale physical simulations.

7.1 Physical Background

The governing equation for electrostatic fields is Coulomb’s
law, which describes the force between two point charges q1

and q2 with distance r as

F = ke
q1q2

r2

1For general meshes, seams are the least visible at edges of negative
curvature. For the technical objects we focus on, edges with high
positive curvature are good candidates for seams as well.

By integration over a charged surface Γ, we get the poten-
tial field φ and the electrostatic field ~E

φ(~x) = ke

∫
Γ

σ(~y)
1

‖~x− ~y‖
dy (1)

~E(~x) = −ke
∫

Γ

σ(~y)
~x− ~y
‖~x− ~y‖3

dy (2)

where σ(~y) is the surface charge density at a point ~y on the
surface and ke is Coulomb’s constant2.

Note that the electrostatic field ~E = −∇φ is the negative
gradient of the potential field and φ is a harmonic function,
what has several useful implications. A harmonic function has
by the minimum principle no real local minima, so tracing its
gradient cannot get stuck. As field lines follow the electro-
static field, they cannot cross each other because this would
require two different field vectors at the intersection point.
Furthermore, the gradient ∇φ is orthogonal to the isosur-
faces of the potential function φ, what implies that two field
lines cannot merge into one as this would require a tangen-
tial component. For these reasons, we can ensure an injective
mapping between the triangle soup and any enclosing surface.

We will drop ke for the rest of the paper as it is only a mul-
tiplicative constant and we are not interested in the physical
value of the forces.

7.2 Field Lines for Texture Mapping

For our method, we assume, that a conductor connects all
triangles of the triangle soup, even when there is no mesh
connectivity between them. When the physical model is ap-
plied, the charges rearrange instantly to minimize potential
differences and because all charges are located at the trian-
gles, the triangle surfaces must be the global maximum of the
potential function.

Such a model allows for a parameterization of the whole
space by electric coordinates [54], which identify each point
uniquely by its potential and the field line passing through it.

Because the monopole field lines can be traced outside of
the triangle soup towards infinity, we are guaranteed to find
point correspondences on any enclosing mesh. Thus for every
vertex of the triangle soup, we find a correspondence on the
enclosing offset mesh proxy which can be used to map UV-
coordinates from the offset mesh triangle to the triangle soup
vertex. By the property that field lines do not cross each
other, the map will not introduce flipped triangles.

7.3 Dipole versus Monopole Fields

Degener and Klein [16] use a dipole field with two opposite
charges to induce field lines between a mesh and a close offset
mesh proxy. Their approach uses a two-sided mesh proxy as
the charged mesh proxy defines the direction of the dipole
field lines emerging from the triangle soup. Thus both sides
must be considered as possible candidates for texture map-
ping.

When using an electrostatic monopole field, where only the
triangle soup is charged, the field is independent of the off-
set mesh proxy. As a consequence, not only the number of

2ke = 8.988 · 109Nm2C−2

6

charge points needed is reduced and thus the computational
time, but it also allows for optimizing offset meshes to better
approximate the triangle soup without considering how the
offset mesh will affect the field lines. As there is no attracting
force guiding the field lines in the direction of the offset mesh,
we need to follow the physical model closely to get meaning-
ful field lines. Thus we have to calculate a surface charge
density that induces a constant non-zero potential on the tri-
angle surfaces which follows from the principle of minimum
energy. Note, that only a constant potential on the surface
guarantees that there are no local minima in the electric field
and field lines can be traced from the surface towards points
at infinity without being attracted to local extrema. See Fig.
2 for examples of point correspondences using a dipole field
(middle) and a monopole field (right).

7.4 Potential Calculation on Triangles

In a triangle soup, the surface is defined by the union
Γ :=

⋃N
i=1 Ti of its triangles. We approximate the surface

charge by piecewise constant charges qi =
∫
Ti
σ(~x)dx on the

triangles and measure the potential at the triangle barycen-
ters ~ci.

The potential field and the electrostatic field integrals from
equation 1 and 2 are approximated (omitting ke) by

φi :=

N∑
j=1

qjIij ≈ φ(~ci) (3)

− ~Ei :=

N∑
j=1

qj ~Jij ≈ − ~E(~ci) (4)

using a m-point quadrature rule for the numeric integrals
with Gauss quadrature points ~yjk and the corresponding
weights wk on the triangle Tj :

Iij :=

m∑
k=1

wk
1

‖~ci − ~yjk‖
, ~Jij :=

m∑
k=1

wk
~ci − ~yjk
‖~ci − ~yjk‖3

We are restricted to use quadrature rules which do not use
the center as quadrature point to avoid division by zero3.

7.5 Fast Charge Calculation

We need to calculate a charge distribution, which yields a
constant non-zero potential at the surface, to induce the field
lines, that will later be used to establish the point correspon-
dences.

The linear system to solve for triangle charges which induce
a prescribed potential field φ on the centers is:

I11 . . . I1n
...

. . .
...

In1 . . . Inn

 ~q =

φ1

...
φn

 (5)

3From the physical point of view, the quadrature points are equivalent
to point charges at which the potential and electrostatic fields have
a singularity making it impossible to measure the value there.

In [54], the authors solve the system directly, which is not
feasible for larger meshes since the system matrix is dense
and thus a solver needs O(n3) operations in order to solve
the linear system and has a memory requirement of O(n2).

Instead of solving for the exact potential, an approximation
is sufficient in our use case. So we use the robin hood method
for non-local charge transfer [30] to calculate an approximate
charge distribution, which minimizes the deviation from a
constant surface potential.

The algorithm initializes the potential field from an arbi-
trary non-zero charge field and then divides the charge trans-
fer process in discrete steps which iteratively balance the po-
tentials until a steady state is reached. In each iteration, the
two triangles that have the largest and the smallest poten-
tial exchange the charge that is necessary to reach the same
potential at both triangles. Because their charge also influ-
ences the potential of other triangles, the error of neighboring
triangles decreases as well and thus we get exponential con-
vergence. As the charge transfer is calculated analytically,
the total charge of the triangle soup is conserved exactly even
when coarse triangulations are used.

In the initialization step of the algorithm, the surface po-
tential induced by the initial charge distribution is calculated.
In general, the complexity isO(n2), as each triangle charge in-
fluences the potential of all other triangles. We accelerate the
computation by using an approximate potential calculated
using the fast multipole method (FMM) [22], which reduces
the complexity to O(n).

During the iteration, the potentials of all triangles need to
be recalculated after each charge transfer. Instead of using
the fast multipole method in each step, the potentials are
only updated by subtracting the influence of the old charge
and adding the influence of the new one. The amount of
charge to transfer from the triangle Tm with the maximum
potential to the triangle Tn with the minimum potential is
given by

δq :=
φm − φn

Imm + Inn − Imn − Inm
. (6)

After the charge transfer the potential φi of each triangle
Ti is updated by

φ
(new)
i := φ

(old)
i +

(
q(new)
n − q(old)

n

)
Iin (7)

+
(
q(new)
m − q(old)

m

)
Iim

= φ
(old)
i + δqIin − δqIim (8)

As the update step only needs constant time, the complex-
ity of a single iteration step lies in O(n) and the involved
constants are small. By recalculating the integrals Iij each
time instead of storing them, the memory requirement lies in
O(n). Furthermore, both steps of the algorithm can easily be
parallelized.

For the algorithm to converge, the mesh triangles should
have similar areas. If the mesh contains triangles, which have
a significantly larger area than the other triangles, we use a
local refinement before calculating the charge points. We only
trace the vertices of the original mesh, so the number of field

7

lines is not increased. The computed charges qi can now be
used to define the approximated electrostatic field in R3 as

~E(~x) := −
N∑
j=1

qj

m∑
k=1

wk
~x− ~yjk
‖~x− ~yjk‖3

. (9)

7.6 Field Line Tracing

Using equation 9, we can trace particles from the triangle
soup vertices along the electrostatic field to find their field
lines. Because the field has a discontinuity at the triangle
surfaces, we place the particles at a point ~x(0) with a small
offset into the outer normal direction, at which the field is
well-defined. To trace the field lines, we use an explicit Euler
scheme with a timestep δt:

~x(i+1) := ~x(i) + δt
~E
(
~x(i)

)∥∥∥ ~E (~x(i)

)∥∥∥ (10)

We normalize the field vector ~E to get an evenly spaced
step size independent from the distance to the charge points.
The timestep size δt is chosen, such that the field lines hit the
offset mesh proxy after a given number of steps. For common
offset mesh proxies, 50 − 100 steps resulted in useful field
lines. When the proxy is chosen to be far from the object,
the number of steps should be increased to achieve the needed
accuracy.

Point correspondences between the triangle soup and the
offset mesh proxy can now be established by finding the inter-
sections of the field lines with the offset mesh triangles. When
an intersection is found, we store the index of the intersected
offset mesh triangle together with the barycentric coordinates
of the intersection point on the triangle.

Because the field is harmonic and thus has no real local
minima, all particles which are not inside closed objects will
eventually hit the offset mesh and thus establish a point cor-
respondence.

Stability of the Euler Scheme When using the explicit Eu-
ler scheme, the timestep δt must satisfy the CFL condition
[14] to avoid numeric artifacts. To increase the stability of
the integration scheme, we implemented the second-order
midpoint method that is also known as the modified Euler
method. This technique is stable and allows for an adaptive
step size. We compare the results of both methods in section
9.5.

Time complexity As calculating ~E for a single particle us-
ing equation 9 lies in O(n), we would have a complexity of
O(k ·n2) when tracing all field lines for k steps. To reduce the
complexity we use a fast multipole approximation for equa-
tion 9 and achieve an overall time complexity of O(k ·n). Be-
cause the particles do not influence each other and the point
charges do not change over time, the field line tracing can
easily be parallelized, and the fast multipole data structures
only need to be calculated once.

After tracing the field lines, we use the stored indices and
barycentric coordinates to interpolate the texture coordinates
at the intersection points and assign them to the correspond-
ing vertices of the triangle soup.

Fig. 5: Left: The electrostatic field lines of a cylinder have
little curvature. Right: The field lines of a torus have
high curvature and a singularity at the center, which
make it necessary to use a tight offset mesh proxy to
avoid skewing the resulting texture.

8 UV-Correction at Chart Boundaries

The triangle intersection points are determined by the trian-
gle index and the barycentric coordinates. This information
allows for a unique mapping between the original shape and
the proxy surface. However, to compute a texture mapping,
we need to take the genus zero charts of the offset mesh proxy
into account. We already optimized the seams on the offset
mesh proxy to be less visible in section 6, but triangles with
vertices mapped to different charts of the offset mesh still
introduce texture artifacts as the UV-coordinates of neigh-
boring triangles may lie far apart.

Fig. 6 shows on the left side a parameterization of an offset
mesh for a cube, which is divided into six charts each of them
having genus zero. When the vertices of the cube are pro-
jected onto these charts, triangles near the seams have their
vertices mapped onto different charts of the offset mesh proxy
as seen in the middle of Fig. 6.

As such situations only occur for triangles near a UV-chart
boundary, it is often sufficient to move the affected vertices of
a triangle a small distance to make all vertices lie on the same
chart. The resulting triangle texture is slightly stretched, but
for most parameterizations the effect is negligible, and the
error gets smaller when the offset mesh proxy is refined.

When the vertices of a triangle are mapped to different
charts of the offset mesh proxy, we calculate for each vertex
the closest point on the two other charts and choose the chart
which minimizes the difference between the area of the trans-
formed triangle and the area of the original triangle. The
resulting positions of the triangle in the UV-space are shown
on the right side of Fig. 6. A direct comparison of the visible
artifacts in the texture of a cube with a coarse triangulation
is shown in Fig. 7.

9 Evaluation & Discussion

The main advantages of using monopole fields instead of
dipole fields are performance and flexibility.

First, we neither need to compute the potential of the off-
set mesh triangles nor consider them when tracing the field

8

Fig. 6: Left: Simple tri-planar UV-coordinates for an offset mesh proxy of a cube. Middle: The UV-coordinates of the
cube after mapping the vertices onto the mesh proxy. Right: The UV-coordinates of the cube after we applied our
UV-fixing procedure.

Fig. 7: Left: The triangle mapping causes texture artifacts
near texture seams on the offset mesh proxy. Right:
Our UV-correction method is able to remove the dis-
tortion by allowing a small deformation of the mapped
triangle.

lines of the triangle soup. As a consequence, the compu-
tational burden is significantly reduced. Therefore, we are
now able to use detailed shape approximations without in-
creasing the time needed for field line tracing. Second, in
contrast to Degener and Klein, the field is independent of
the offset mesh proxy, what allows us to interchange different
offset mesh proxies without costly recalculation of the field.
Third, the decrease in computational complexity of tracing
the field lines to O(kn) allows us to process larger triangle
soups, which were infeasible to compute using the approach
of Degener and Klein.

In this section, we compare the run-time of our method
against previous approaches. All experiments were performed
on a Intel Core i7-3740QM CPU with a 2.7 GHz quad core
processor (3.70 GHz turbo frequency on a single core) and 32
GB RAM.

9.1 Offset Mesh Proxies

For texturing, an offset mesh proxy which is a good approxi-
mation of the original shape is crucial. However, for smaller
offset distances, which capture more details of the shape, we

need to increase the number of samples when extracting the
surface using the marching cubes algorithm. As a direct con-
sequence, smaller offset distances lead to mesh proxies with a
higher triangle count. In Table 1 we list the relation between
offset distance, required resolution (determined by the sam-
pling theorem [47]), and the number of triangles and vertices
generated for a simple cylinder of radius 1.0 and height 2.0,
to emphasize how fast the number of triangles and vertices is
growing when the offset distance is getting smaller.

Table 1: The relation between the offset distance from the
cylinder and the needed resolution for the marching
cubes algorithm according to the sampling theorem.

Offset
Distance [%]

Needed
Samples

Vertices Triangles

10 13 576 1148
5 40 6894 13784
3 67 21376 42748
2 100 50086 100168
1 200 210814 421624

9.2 Monopole vs. Dipole Potential Calculation

To compare the computational time needed by the potential
calculation, we used a torus with 5000 and a torus with 2450
triangles, each equipped with two different offset mesh proxies
with a distance of 5% of the torus diameter, triangulated
using 40 and 80 samples.

In Table 2 and Fig. 8, we show the time needed to calculate
the potentials induced from a given charge field by using a
direct calculation using equation 3 and by using fast multipole
methods (FMM) implemented with the exafmm library [60].
For the multipole acceptance criterion, we used values of θ =
0.1 and θ = 0.4, where a larger value of θ results in a coarser
approximation of the electrostatic field. To approximate the

9

integrals, we used 6th-degree Gauss quadrature, leading to
12|F | charge points, where |F | is the number of triangles in
the triangle soup. Both methods were parallelized to use all
cores of the CPU.

Table 2: Time needed to calculate the surface potentials.

Total
Triangles

Full
Calculation

FMM
(θ = 0.1)

FMM
(θ = 0.4)

Monopole 5000 1.352 0.721 0.178
Dipole (40) 20312 24.476 6.192 0.855
Dipole (80) 65256 324.395 23.259 2.771

Monopole 2450 0.302 0.168 0.074
Dipole (40) 17754 17.519 4.838 0.743
Dipole (80) 62590 283.918 18.984 2.944

10-1

100

101

102

103

104

103 104 105 106

Ti
m

e
 [

s]

Charge Points

Full Calculation
FMM with θ=0.1
FMM with θ=0.4

Rate 2
Rate 1

Fig. 8: The time needed to calculate the surface potentials
using the simple O(n2) approach and the time needed
when using a fast multipole methods approximation.

As the number of charges for a monopole field only depends
on the number of triangles of the triangle soup, the calculation
is much faster than the calculation for dipole fields, because
dipole algorithms need to calculate the potential of the offset
mesh triangles as well. In our example, the total number of
triangle potentials which need to be calculated for a dipole
field is by a factor 4 to 24 larger than the number of potentials
needed for a monopole field. For both monopole and dipole
calculations, the full potential calculation has quadratic com-
plexity while the fast multipole approximation has linear com-
plexity as depicted in Fig. 8.

9.3 Robin Hood Iteration

The calculation of the charge field is done using our imple-
mentation of the robin hood iteration (see section 7.5) with a
parallelized potential update step from equation 8, which uses
all cores of the CPU. We tested the iteration with different
shape primitives and measured the time needed to converge
to a maximum-norm error below 10−13, which is the best ac-
curacy we were able to achieve on all meshes.

The iteration converged in about 2 seconds on a torus with
5000 triangles, on a sphere with 4900 triangles, and on a
cylinder with 5900 triangles, and we observed an exponential
convergence rate. The time needed to achieve the desired
accuracies is listed in Table 3 and the convergence rates are
plotted in Fig. 9.

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 0 0.5 1 1.5 2 2.5
R

e
la

ti
v
e

 E
rr

o
r

Time [s]

Sphere, Cylinder, Torus

Sphere
Torus

Cylinder
e-14 · x

Fig. 9: Semi-logarithmic plot of the maximum norm error
of the potential on smooth objects versus the time
needed by the robin hood iteration.

For objects with sharp features, the iteration consumed
much more time to converge, e.g., on a cube with 4900 trian-
gles the error remained larger than 10−6 for about 350 seconds
before it drops rapidly below 10−13 in the last few iterations.
Fig. 10 shows rescaled plots of the convergence behavior and
the time needed to achieve the desired accuracies is listed in
Table 3.

To measure the speedup of approximating the charge field
using the robin hood method, we compared the time needed
for solving the full equation system in equation 5 with the
time needed by the robin hood algorithm to converge to a
potential error smaller than 10−13 in the maximum norm. We
chose a torus (radius 1.0, section radius 0.5) as an example
because its analytic surface and its charge field are continuous
and it is easy to generate regular triangulations of different
resolutions.

To solve the linear system, we computed a LU-
decomposition of the matrix with complete pivoting using
libeigen [23] on a single core4 and for the robin hood algo-
rithm we used our own implementation. We measured both
the time needed to converge when using a direct calculation of
the initial potentials and the time needed when using a fast
multipole calculation of the initial potentials with θ = 0.1.
The robin hood update step, the full calculation of initial po-
tentials, and the fast multipole calculations were parallelized
to use all cores of the CPU.

We observed a linear rate in the robin hood iteration.
When we compute the full potential during the initialization

4The libeigen solver is not parallelized, but the time needed should
only differ by a constant factor of about the number of cores, so the
convergence rate is not changed.

10

Table 3: The time needed by the robin hood iteration to converge on the test objects.
Sphere (4900 Triangles)

Error Iterations Time [s]

4.13·10−3 0 0.00
1·10−1 1 0.00
1·10−2 2 0.00
1·10−3 142 0.10
1·10−4 371 0.24
1·10−5 600 0.39
1·10−6 829 0.53
1·10−7 1058 0.68
1·10−8 1287 0.82
1·10−9 1516 0.97
1·10−10 1745 1.12
1·10−11 1974 1.26
1·10−12 2203 1.41
1·10−13 2431 1.55

Torus (5000 Triangles)

Error Iterations Time [s]

3.95·10−1 0 0.00
1·10−1 137 0.09
1·10−2 366 0.23
1·10−3 595 0.38
1·10−4 825 0.53
1·10−5 1054 0.68
1·10−6 1283 0.82
1·10−7 1512 0.97
1·10−8 1741 1.11
1·10−9 1970 1.26
1·10−10 2199 1.41
1·10−11 2428 1.55
1·10−12 2657 1.70
1·10−13 2883 1.84

Cylinder (5900 Triangles)

Error Iterations Time [s]

1.96·10−1 0 0.00
1·10−1 67 0.05
1·10−2 297 0.22
1·10−3 526 0.38
1·10−4 755 0.56
1·10−5 984 0.73
1·10−6 1213 0.90
1·10−7 1442 1.06
1·10−8 1671 1.23
1·10−9 1900 1.40
1·10−10 2129 1.56
1·10−11 2358 1.73
1·10−12 2587 1.90
1·10−13 2814 2.06

Cube (4900 Triangles)

Error Iterations Time [s]

5.95·10−1 0 0.00
1·10−1 14957 9.98
1·10−2 71754 54.62
1·10−3 169494 137.66
1·10−4 291756 254.70
1·10−5 375936 336.23
1·10−6 402376 363.98
1·10−7 402390 364.00
1·10−8 402620 364.24
1·10−9 402849 364.45
1·10−10 403078 364.68
1·10−11 403307 365.03
1·10−12 403535 365.37
1·10−13 403767 365.73

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 0 50 100 150 200 250 300 350 400

R
e

la
ti

v
e

 E
rr

o
r

Time [s]

Cube

rel. Error
e-0.03 · x

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 363.8 364 364.2 364.4 364.6 364.8 365 365.2 365.4 365.6 365.8

R
e

la
ti

v
e

 E
rr

o
r

Time [s]

Cube

rel. Error
e-8 · x

Fig. 10: Left: Semi-logarithmic plot of the convergence of the robin hood iteration on a cube with 4900 triangles. Right:
The convergence plot rescaled to show the increased rate after 364 seconds.

step, the quadratic complexity starts to dominate the overall
rate at about 5000 triangles. When using the fast multipole
method for the initialization step, the overall rate stays linear
independent of the size of the input.

The measured times are listed in Table 4 and the corre-
sponding rates are plotted in Fig. 11. We did not solve the
full system for more than 12800 triangles, as the computation
time increases drastically. The libeigen solver showed a sta-
ble rate of O(n3) for solving the system which matches the
theoretic complexity. We assume that the rate stays constant
for larger systems as well.

9.4 Field Tracing

To measure the time needed for field line tracing we used a
torus of radius 1.0 and section radius 0.5, traced its field lines
50 steps, and compared the full calculation of the field vec-
tors using equation 9 against using the fast multipole method
approximation of the field with the parameters θ = 0.4 and
θ = 0.1. The charge field, which induces the field lines, was
calculated using fast multipole methods and the robin hood

iteration in both cases. Table 5 lists the time needed for
tracing the field lines of the torus mesh triangulated with dif-
ferent resolutions. The corresponding rates are plotted in Fig.
12. As we used 6th-degree Gauss quadrature, the number of
charge points is 12|F | where F is the number of triangles.

We observed that the approximation with fast multipole
methods yields a rate of 1, while the full calculation has the
expected rate of 2. We did not measure the time of the full
calculation for the last two triangulations, as it would have
been too time-consuming. We assume the rate to remain
stable because the algorithm only consists of a simple particle
update step using equations 9 and 10 without any side effects.

9.5 Numeric Integration

For tracing the field lines, we need to calculate two different
integrals, i.e., the time integration when tracing a particle
and the field integration to calculate the field vector at the
position of the particle. For both integrals, we use numeric
approximations.

11

Table 4: A comparison between the time needed for calcu-
lating the charge distribution by solving the linear
system in equation 5 and the time needed by the
robin hood algorithm for calculating the charge dis-
tribution. We observe a time complexity of O(n3)
for solving the linear system and a complexity of
O(n2) when using the robin hood algorithm with a
full potential initialization. When we combine the
robin hood algorithm with fast multipole methods,
the complexity is reduced to O(n).

Triangles RH [s] RH (FMM) [s] Full [s]

800 0.14 0.22 0.33
1600 0.37 0.40 2.80
3200 1.01 0.76 22.56
6400 6.21 4.33 236.68

12800 14.15 5.43 1678.71
25600 46.93 12.19 —
51200 197.25 19.79 —

105800 918.38 36.94 —

Time Integration For the time discretization, we use the
explicit Euler scheme. In theory, this scheme might become
unstable if the CFL condition [14] does not hold for the cho-
sen timestep. We did not encounter such problems in practice
when we chose the step size in a way that the field line needs
about 50− 100 steps to reach the offset mesh. As an alterna-
tive, we implemented the midpoint method, which is stable
and has a second-order convergence.

In Fig. 13 and Table 6 we show the convergence of the
explicit Euler scheme and the midpoint method against the
result of the midpoint method at the step size 10−4, when
tracing the 400 field lines of the torus in Fig. 5. An example
of a field line traced one time using the explicit Euler scheme
and the other time using the midpoint method is depicted in
Fig. 14. Even when using a rather large timestep of δt = 0.1,
the final positions of the traced particles are close.

Field Integration We integrate the potential field using a
Gauss integration over the triangles to get the field vectors at
the positions of the traced particles.

The accuracy of this integration has a much more signifi-
cant influence on the quality of the field lines than the time
integration, especially for positions near the charged surface.
Fig. 15 shows a pipe with 320 faces and 160 vertices as an
example in which the field lines intersect solid faces when
the integration method is not accurate enough. In our expe-
rience second-order Gauss quadrature is accurate enough for
nearly convex objects, but for shapes with concavities or even
tunnels, like the pipe in fig 15, we need to use higher order
integration or finer triangulations to avoid numeric artifacts.

In section 7.4, we restricted the choice of the integration
rule for the charge calculation to rules which do not include
the barycenter of the triangle, to be able to calculate the po-
tential there. While this avoids problems during the charge
calculation, the singularities could cause problems in the field
line tracing process as well. When necessary, special singu-

10-2

10-1

100

101

102

103

104

103 104 105

T
im

e
 [

s]

Triangles

Full Calculation
Robin Hood (Full Pot.)

Robin Hood (FMM Pot.)
rate 3
rate 2
rate 1

Fig. 11: The relation between the number of triangles and
the time needed to converge shows a stable rate of
3 for solving the linear system, while the robin hood
algorithm using a full initialization with equation 3
shows an asymptotic rate of 2 which is reduced to 1
when an initialization with fast multipole methods is
used.

larity treatment, e.g. [56] and [36], can be used in equations
3 and 4 to compensate for the singularities at the integration
points.

10 Examples

We performed a multitude of experiments to compute param-
eterizations for complex objects including thin structures to
showcase our technique. All experiments were performed us-
ing an own implementation as an Autodesk Maya R© plugin.
For the parameterization of the offset mesh proxies in our
examples, we used the balanced isometric parameterization
algorithm [15].

We created example triangle soups from models in the
Princeton shape benchmark set [51] by duplicating all shared
vertices and adding random noise to the vertex coordinates
(see Table 7). Afterwards, we used the triangle soups as in-
put for our algorithm and parameterized them. The results
are shown in Fig. 16. To showcase our technique on objects
having a higher genus, we used a botijo model with 13859
vertices and 29734 faces and genus 5 from the COSEG data
set [55] and split it into a triangle soup with 89202 vertices
and 29734 triangles. We used a tight offset mesh proxy with
a distance of 0.2% and a marching cubes resolution of 250
voxels in each dimension because the handles cause a curved
electrostatic field. In Fig. 17 we show the botijo with its field
lines, the textured offset mesh proxy, and finally the textured
triangle soup. The average distortion at the vertices is listed
in Table 7. We expect that most triangle soups, which should
be used for rendering, contain less noise.

As examples for real-world models, we parameterized a gear
selector with 14356 triangles and 43068 vertices and a seat

12

100

101

102

103

104

103 104 105

Ti
m

e
 [

s]

Charged Triangles

Full Calculation
FMM with θ=0.1
FMM with θ=0.4

Rate 2
Rate 1

Fig. 12: The relation between the time needed for tracing the
field lines of triangle soups with different numbers of
triangles for 50 steps using the full calculation with
equation 9 and using a fast multipole methods ap-
proximation. We observe the expected rate of 2 for
the full calculation and asymptotic rates of 1 for the
fast multipole method approximations.

belt buckle with 47661 triangles and 51875 vertices from a
set of car parts which were provided by Volkswagen AG. The
left side of Fig. 18 shows the final parameterization of the
objects.

11 Comparison with Maya
UV-Generators

In addition to the experiments from the previous section, we
perform a comparison against UV-generators available in Au-
todesk Maya R©. The available functions can generate planar,
tri-planar, cylindrical, and spherical UV-coordinates for ar-
bitrary triangle soups by mapping the triangles on standard
parameterizations of these shapes.

We parameterized the gear selector and the seat belt buckle
from our set of car parts using these functions, manually
rescaled the generated components in UV-space to have the
same texture resolution, and manually aligned them to have
matching textures at the boundaries. The textured models
are shown on the right in Fig. 18.

To texture the gear selector we choose cylindrical UV-
coordinates for the handle and spherical UV-coordinates for
the cap which provide useful approximations of the shapes.
We see smaller artifacts and a singularity at the top, but the
overall result for the gear selector is acceptable.

For the seat belt buckle, we used a tri-planar UV-mapping
for each connected component on its own, as it seems to be
the best built-in method for the mostly cuboidal shape. For
the curved piece of the belt at the back, we used a tri-planar
UV-mapping as well because none of the available generators
can match the shape correctly. As it has an almost right angle
in the middle, a tri-planar mapping yields a better result than
expected, but we still see large artifacts inside the texture of

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

10-510-410-310-210-1100101

E
rr

o
r

Step Size

Explicit Euler
rate 1

Midpoint Method
rate 2

Fig. 13: Convergence of the field lines traced using the explicit
Euler scheme and the midpoint method.

Fig. 14: The time integration using an explicit Euler scheme
(top) and the midpoint method (middle) yield very
similar results even with a large timestep of 0.1. At
the bottom, both field lines (traced from left to right)
are shown together. Note that the first position is not
the same, as the particle is visualized after the first
tracing step.

Fig. 15: The field lines of the inside of a pipe using a second-
order Gauss integration (left) and using a fourth-
order Gauss integration (right) for the potential field.
While the second-order integration fails to prevent
the field lines from intersecting solid faces. A fourth-
order accurate integration method yields correct re-
sults.

13

Input Triangle Soup Offset Mesh Proxy Textured Offset Mesh Proxy Textured Triangle Soup

Fig. 16: We used examples from the Princeton shape benchmark models to generate triangle soups for testing our novel
texture mapping method. The triangle soup (left) was generated by splitting the model into its triangles and
adding random noise to the vertex positions. Then we created an offset mesh proxy and textured it using the
parameterization algorithm in [15] (middle). The triangle soup with the projected texture is shown on the right side.

14

The input triangle soup
The triangle soup with field

lines

The textured (smooth) offset
mesh proxy

The triangle soup after
texture mapping

Fig. 17: As a challenging example of a model of higher genus, we chose a botijo model from the COSEG data set and created a
triangle soup from it by splitting the triangles and adding random noise to the vertex positions. Then we calculated
the electrostatic field lines of the triangle soup and used them to find point correspondences on a textured 2-manifold
mesh proxy of the botijo.

Table 5: We compared the time needed for tracing field lines
of triangle soups with a different number of triangles
for 50 steps using equation 9 and the time needed
when using a fast multipole method approximation.
We observed a computational complexity of O(n2)
for the full calculation which is reduced to O(n)
when a fast multipole method approximation is used.

Triangles FMM (θ = 0.4) [s] FMM (θ = 0.1) [s] Full [s]

800 2.18 2.53 0.94
1600 2.84 6.24 4.03
3200 1.99 8.87 16.83
6400 3.53 32.44 75.37

12800 8.22 124.96 333.97
25600 17.13 361.96 1402.52
51200 35.71 724.67 5584.04

102400 68.69 1434.35 —
204800 164.71 2820.83 —

each component of the model, which cannot be fixed without
a substantial amount of manual work.

In comparison, the parameterization projected from an off-
set mesh proxy is smoother and contains fewer artifacts than
the parameterization with Autodesk Maya R©. In the case of
the seat belt buckle, we get a continuous texture while the tri-
planar projection introduces many seams in the texture even
at surfaces of low curvature. For more complex shapes, i.e.,
models of higher genus, there are no useful built-in methods

Table 6: The error of the field line integration using the ex-
plicit Euler scheme and the midpoint method, mea-
sured by comparing the final particles positions of
the traced field lines, using the result for the mid-
point method at the finest timestep as reference.

Step Size Steps
Error

(Explicit Euler)
Error

(Midpoint Method)

1·100 1·100 3.522·10−1 2.5148·10−1

1·10−1 1·101 3.1137·10−2 1.9424·10−3

1·10−2 1·102 3.2753·10−3 3.2174·10−5

1·10−3 1·103 3.301·10−4 3.482·10−7

1·10−4 1·104 3.3034·10−5 —

for automatic parameterization at all.

12 Limitations & Future Work

The algorithm works best with triangle soups, which are an
approximation of a 2-manifold watertight mesh, e.g., trian-
gulated CAD models. Smaller artifacts and surface noise are
handled correctly, but some edge cases require additional pre-
processing.

15

Our Method Autodesk Maya R©

Fig. 18: We created a parameterization for the gear selector
in Fig. 1 and a seat belt buckle from a VW Tiguan
model with our novel method (left). For comparison,
we show UV-coordinates created by an expert us-
ing only the generators in Autodesk Maya R© (right).
While the gear selector can be parameterized using
Autodesk Maya R© with minor artifacts, the seat belt
buckle shows severe artifacts which need manual cor-
rection.

Table 7: The distortion of the model given by the average
distance of the perturbed vertices from the original
positions. The values are rescaled with the diameter
of the bounding box of the object.

2-Norm 1-Norm ∞-Norm

Car 4.52806·10−3 7.06919·10−3 3.53651·10−3

Dragon 1.49028·10−3 2.32749·10−3 1.16346·10−3

Sink 3.81522·10−3 5.95865·10−3 2.9774·10−3

Plane 2.46499·10−3 3.71417·10−3 2.05845·10−3

Botijo 9.62139·10−4 1.50191·10−3 7.51904·10−4

12.1 Triangle Intersections

While our algorithm is robust against intersecting triangles
in noisy meshes, it does not handle the case of triangle inter-
sections, for which vertices are mapped to different parts of
the offset mesh. Fig. 19 (top row) shows an example of two
intersecting planes, each having a row of triangles which is
cut in a way that the field lines of the vertices intersect differ-
ent parts of the offset mesh proxy. As the field lines intersect
the offset mesh far apart from each other, we observe severe
texture artifacts.

To solve the problem, we refine the triangles at the inter-
section in a pre-processing step, such that for each triangle
all vertices lie on the same side of the intersection and will be
mapped to the same part of the offset mesh (see the bottom
row of Fig. 19).

When refining the intersecting triangles, the number of field
lines and thus the computation time is increased proportion-
ally to the number of triangles, which are intersected in a way
that requires refinement. For reducing the artifacts, only ad-
ditional field lines need to be added, but we recommend using
the new triangles for the charge calculation as well, because
the potential field is also affected by such triangles.

Fig. 19: Top: A plane is split by another plane. The vertices
of the cut triangles are mapped onto different parts of
the offset mesh proxy, which causes visible artifacts.
Bottom: By refining the triangles at the intersection
points, we can make sure that all vertices of the new
triangles are mapped to the same part of the mesh
proxy.

12.2 Narrow Surfaces

The second problem might occur at surfaces, which are close
together, and thus induce a field with a strong curvature and
possibly singularities. Fig. 21 shows an example of two plates
forming a V-shape, which induces an electric field with large
curvature even when the surfaces are flat. To avoid artifacts
due to the curved field lines between the triangle soup and the

16

offset mesh (see Fig. 20 top row), we need to use a narrower
offset mesh proxy, which intersects the field lines close to the
original surface. The bottom row of Fig. 20 shows the result
of using a tight offset mesh.

Fig. 20: Top: The offset mesh proxy is intersected by the field
lines far from the original surface, what leads to arti-
facts in the texture because of the high curvature of
the field lines. Bottom: Reducing the offset distance
yields an improved result without artifacts.

To use a closer offset mesh, as needed to handle the narrow
parts of the example, we neither need to increase the number
of field lines, nor we need to recalculate the charge field. Thus
replacing an offset mesh which causes artifacts by a more
accurate one is rather cheap, because only the intersections
with the field lines need to be recalculated.

Future work may address the increased number of offset
mesh triangles by applying mesh simplification, or using a
more sophisticated offset mesh proxy generation algorithm.

12.3 Non-Bijectivity

A dipole field as used by Degener et al. [16] guarantees bijec-
tivity, because of the inherent symmetry of the approach. As
each point on both surfaces is intersected by a unique field
line, which only intersects exactly one source and one target
mesh point, and field lines cannot cross each other, the map-
ping must be bijective and continuous. Note that by using
a two-sided offset mesh proxy, there are two different target
meshes and the triangle soup has one bijection to the outer
mesh proxy and one bijection to the inner mesh proxy, see
Fig. 2.

In our approach, we do not use a charged offset mesh proxy
and thus get monopole field lines, which extend from the sur-
face to infinity. We use the UV-coordinates of the first inter-
section of such field lines with the offset mesh proxy as point
correspondences for the vertices. This approach is only in-
jective, because each point of the offset mesh proxy can only
be intersected by one field line, but a single field line may
intersect the offset mesh proxy more than once, so the other
intersection points are not in the image of the mapping. Fig.
22 shows an example of field lines emerging from a concavity,

Fig. 21: The field lines between the two plates have a large
curvature because both plates repel them and the
field has a singularity at the center and the common
edge of the plates.

which intersect an offset mesh proxy multiple times.

Fig. 22: Monopole field lines may intersect an offset mesh
proxy more than once and thus cannot guarantee a
bijective mapping.

12.4 Triangle Soups with Boundary

Our approach works best for triangle soups, which approx-
imate watertight meshes. On triangle soups which approxi-
mate meshes with boundary, the field tracing becomes more
sensitive to distortions and we might get ambiguities in the
field.

In an approximation of a watertight mesh, the “inside” has
a near zero field, which makes it easy to determine inside and
outside and prevents tracing field lines in the wrong direc-
tion due to approximation errors. When the triangle soup
is approximating a mesh with boundary, its field lines have
several disadvantages: The field lines of boundary vertices
often point in a direction tangential to the triangle, while a
perpendicular direction would lead to a better mapping. For
triangles which are part of a “one-sided” triangle soup, like a

17

plane, the vertices have field lines of similar strength in front
and back direction, what makes it hard to use the field lines
to determine which side of the triangle should be textured
without using additional information like the surface normal
orientation. An inconsistent choice of directions causes to se-
vere distortion, as a the vertices of a triangle will be mapped
to different sides of the corresponding offset mesh proxy.

Fig. 23: While the texture mapping is well-defined and con-
tinuous on the left side, the one-sided boundary at
the right side induces field lines in two directions with
no clear indication which one should be used. Fur-
thermore, the boundary vertex at the right causes a
singularity in the field.

13 Conclusion

We presented a method to generate and trace field lines of
electrostatic monopole fields in an efficient way to use them
for finding point correspondences between triangle soups and
enclosing 2-manifold meshes. This result proved to be useful
for fully automatic texture mapping between triangle soups
and automatically generated offset mesh proxies.

Our novel monopole field line tracing algorithm has a total
complexity of O(k · n) for tracing monopole field lines from n
vertices of a triangle soup for k steps and O(k · (n+m)) for
tracing dipole field lines, where m is the number of additional
vertices on the enclosing mesh.

The reduced complexity is a significant improvement over
previous approaches like [16], which have a complexity of
O(k · n2) for tracing monopole field lines and O(k · (n+m)2)
for tracing dipole field lines. Furthermore, previous ap-
proaches that use electrostatic monopole fields such as the
technique of Wang et al. [54] need to solve a dense linear equa-
tion system, which has a complexity of O(n3). Our technique
reduces the complexity to O(n) by using approximations for
the involved physical quantities.

We evaluated both convergence and run-time of our algo-
rithm and tested it on a multitude of 3D models from shape
benchmark sets and real-world CAD models. We have shown,
that the technique can establish point correspondences for
texture transfer. Besides, we discussed that an approxima-
tion of the underlying physics provides sufficient accuracy.

The evaluation of the fast multipole method and the robin
hood algorithm has shown, that both hold their promise re-
garding computational complexity and quality of the approx-
imation. The significant speedup achieved through these ap-
proximations enabled us to use field lines to parameterize
large triangle soups. This might not be achieved using other

techniques, as a significantly larger computational effort is
needed.

By using monopole fields, we gained the flexibility to use
different mesh proxies without the need for a time-consuming
recomputation of the field lines. Furthermore, we are now
able to experiment with different mesh proxy shapes without
considering their influence on the electrostatic field.

Acknowledgments

We like to thank Volkswagen AG for providing us with parts
of car models and the reviewers for their valuable feedback
on the article.

References

[1] Noam Aigerman, Shahar Z Kovalsky, and Yaron Lipman.
Spherical orbifold tu e embeddings. ACM Transactions
on Graphics (TOG), 36(4):90, 2017.

[2] Noam Aigerman and Yaron Lipman. Orbifold tutte em-
beddings. ACM Trans. Graph., 34(6):190–1, 2015.

[3] Noam Aigerman and Yaron Lipman. Hyperbolic orb-
ifold tutte embeddings. ACM Trans. Graph., 35(6):217–
1, 2016.

[4] Noam Aigerman, Roi Poranne, and Yaron Lipman.
Seamless surface mappings. ACM Trans. Graph.,
34(4):72:1–72:13, July 2015.

[5] Marc Alexa. Recent advances in mesh morphing. In
Computer graphics forum, volume 21, pages 173–198.
Wiley Online Library, 2002.

[6] Gavin Barill, Neil Dickson, Ryan Schmidt, David I.W.
Levin, and Alec Jacobson. Fast winding numbers for
soups and clouds. ACM Transactions on Graphics, 2018.

[7] Gino van den Bergen. Efficient collision detection of
complex deformable models using aabb trees. Journal
of Graphics Tools, 2(4):1–13, 1997.

[8] Silvia Biasotti, Andrea Cerri, A Bronstein, and M Bron-
stein. Recent trends, applications, and perspectives in
3d shape similarity assessment. In Computer Graphics
Forum, volume 35, pages 87–119. Wiley Online Library,
2016.

[9] Alon Bright, Edward Chien, and Ofir Weber. Harmonic
global parametrization with rational holonomy. ACM
Transactions on Graphics (TOG), 36(4):89, 2017.

[10] Oliver Burghard, Alexander Dieckmann, and Reinhard
Klein. Embedding shapes with green’s functions for
global shape matching. Computers & Graphics, 68C:1–
10, 2017.

[11] Stéphane Calderon and Tamy Boubekeur. Bounding
proxies for shape approximation. ACM Transactions on
Graphics (TOG), 36(4):57, 2017.

18

[12] Frédéric Chazal, Maks Ovsjanikov, Etienne Corman,
Michael Bronstein, Emanuele Rodola, Mirela Ben-Chen,
Leonidas Guibas, and Alex Bronstein. Computing and
processing correspondences with functional maps. In
ACM SIGGRAPH 2017 Courses, 2017.

[13] David Cohen-Steiner, Pierre Alliez, and Mathieu Des-
brun. Variational shape approximation. In ACM Trans-
actions on Graphics (TOG), volume 23, pages 905–914.
ACM, 2004.

[14] Richard Courant, Kurt Friedrichs, and Hans Lewy. On
the partial difference equations of mathematical physics.
IBM journal of Research and Development, 11(2):215–
234, 1967.

[15] Patrick Degener. Computing parameterizations of tri-
angulated surfaces with minimal metric deformations.
Diplomarbeit, Institut für Informatik II, Universität
Bonn, 2003.

[16] Patrick Degener and Reinhard Klein. Texture atlas gen-
eration for inconsistent meshes and point sets. In IEEE
International Conference on Shape Modeling and Appli-
cations 2007 (SMI’07), pages 156–168. IEEE Computer
Society, June 2007.

[17] Edsger W Dijkstra. A note on two problems in connex-
ion with graphs. Numerische mathematik, 1(1):269–271,
1959.

[18] David A Field. Laplacian smoothing and delaunay trian-
gulations. International Journal for Numerical Methods
in Biomedical Engineering, 4(6):709–712, 1988.

[19] Michael S Floater and Kai Hormann. Surface parameter-
ization: a tutorial and survey. In Advances in multireso-
lution for geometric modelling, pages 157–186. Springer,
2005.

[20] Xiao-Ming Fu and Yang Liu. Computing inversion-free
mappings by simplex assembly. ACM Transactions on
Graphics (TOG), 35(6):216, 2016.

[21] Xiao-Ming Fu, Yang Liu, and Baining Guo. Comput-
ing locally injective mappings by advanced mips. ACM
Transactions on Graphics (TOG), 34(4):71, 2015.

[22] Leslie Greengard and Vladimir Rokhlin. A fast algo-
rithm for particle simulations. Journal of computational
physics, 73(2):325–348, 1987.

[23] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[24] Kai Hormann and Günther Greiner. Mips: An ef-
ficient global parametrization method. Technical re-
port, ERLANGEN-NUERNBERG UNIV (GERMANY)
COMPUTER GRAPHICS GROUP, 2000.

[25] Kai Hormann, Günther Greiner, and Swen Campagna.
Hierarchical parametrization of triangulated surfaces. In
Proceedings of Vision, Modeling, and Visualization, vol-
ume 1999, pages 219–226, 1999.

[26] Kai Hormann, Konrad Polthier, and Alia Sheffer. Mesh
parameterization: Theory and practice. In ACM SIG-
GRAPH ASIA 2008 Courses, SIGGRAPH Asia ’08,
pages 12:1–12:87, New York, NY, USA, 2008. ACM.

[27] Michael Kazhdan, Allison Klein, Ketan Dalal, and
Hugues Hoppe. Unconstrained isosurface extraction on
arbitrary octrees. In Symposium on Geometry Process-
ing, volume 7, pages 256–263, 2007.

[28] Vladimir Kim, Yaron Lipman, and Thomas Funkhouser.
Blended intrinsic maps. ACM Transactions on Graphics
(Proc. SIGGRAPH), 30(4), July 2011.

[29] Francis Lazarus and Anne Verroust. Three-dimensional
metamorphosis: a survey. The Visual Computer,
14(8):373–389, 1998.

[30] Predrag Lazić, Hrvoje Štefančić, and Hrvoje Abraham.
The robin hood method–a novel numerical method for
electrostatic problems based on a non-local charge trans-
fer. Journal of Computational Physics, 213(1):117–140,
2006.

[31] Bruno Lévy and Jean-Laurent Mallet. Non-distorted tex-
ture mapping for sheared triangulated meshes. In Pro-
ceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’98,
pages 343–352, New York, NY, USA, 1998. ACM.

[32] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome
Maillot. Least squares conformal maps for automatic tex-
ture atlas generation. In ACM transactions on graphics
(TOG), volume 21, pages 362–371. ACM, 2002.

[33] Yaron Lipman and Thomas Funkhouser. Möbius vot-
ing for surface correspondence. ACM Transactions on
Graphics (TOG), 28(3):72, 2009.

[34] Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and
Steven J Gortler. A local/global approach to mesh
parameterization. In Computer Graphics Forum, vol-
ume 27, pages 1495–1504. Wiley Online Library, 2008.

[35] William E Lorensen and Harvey E Cline. Marching
cubes: A high resolution 3d surface construction algo-
rithm. In ACM siggraph computer graphics, volume 21,
pages 163–169. ACM, 1987.

[36] J Ma, V Rokhlin, and Stephen Wandzura. Generalized
gaussian quadrature rules for systems of arbitrary func-
tions. SIAM Journal on Numerical Analysis, 33(3):971–
996, 1996.

[37] Ashish Myles and Denis Zorin. Global parametrization
by incremental flattening. ACM Transactions on Graph-
ics (TOG), 31(4):109, 2012.

[38] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon,
Adrian Butscher, and Leonidas Guibas. Functional
maps: a flexible representation of maps between shapes.
ACM Transactions on Graphics (TOG), 31(4):30, 2012.

19

[39] Maks Ovsjanikov, Quentin Mérigot, Facundo Mémoli,
and Leonidas Guibas. One point isometric matching
with the heat kernel. In Computer Graphics Forum, vol-
ume 29, pages 1555–1564. Wiley Online Library, 2010.

[40] Les Piegl. On nurbs: A survey. IEEE Comput. Graph.
Appl., 11(1):55–71, January 1991.

[41] Ulrich Pinkall and Konrad Polthier. Computing discrete
minimal surfaces and their conjugates. Experimental
mathematics, 2(1):15–36, 1993.

[42] Roi Poranne, Marco Tarini, Sandro Huber, Daniele
Panozzo, and Olga Sorkine-Hornung. Autocuts: simul-
taneous distortion and cut optimization for uv mapping.
ACM Transactions on Graphics (TOG), 36(6):215, 2017.

[43] Michael Rabinovich, Roi Poranne, Daniele Panozzo, and
Olga Sorkine-Hornung. Scalable locally injective map-
pings. ACM Transactions on Graphics (TOG), 36(2):16,
2017.

[44] Leonardo Sacht, Etienne Vouga, and Alec Jacobson.
Nested cages. ACM Transactions on Graphics (TOG),
34(6):170, 2015.

[45] Peter Sandilands and Taku Komura. Model topology
change with correspondence using electrostatics. In Pro-
ceedings of the 20th ACM Symposium on Virtual Reality
Software and Technology, pages 41–44. ACM, 2014.

[46] Rohan Sawhney and Keenan Crane. Boundary first flat-
tening. ACM Transactions on Graphics (TOG), 37(1):5,
2017.

[47] Claude Elwood Shannon. Communication in the pres-
ence of noise. Proceedings of the IRE, 37(1):10–21, 1949.

[48] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and
Alexander Bogomyakov. Abf++: fast and robust an-
gle based flattening. ACM Transactions on Graphics
(TOG), 24(2):311–330, 2005.

[49] Alla Sheffer, Emil Praun, Kenneth Rose, et al. Mesh
parameterization methods and their applications. Foun-
dations and Trends R© in Computer Graphics and Vision,
2(2):105–171, 2007.

[50] Chen Shen, James F O’Brien, and Jonathan R
Shewchuk. Interpolating and approximating implicit
surfaces from polygon soup. In ACM Siggraph 2005
Courses, page 204. ACM, 2005.

[51] Philip Shilane, Patrick Min, Michael Kazhdan, and
Thomas Funkhouser. The princeton shape benchmark.
In Shape modeling applications, 2004. Proceedings, pages
167–178. IEEE, 2004.

[52] Oliver Van Kaick, Hao Zhang, Ghassan Hamarneh, and
Daniel Cohen-Or. A survey on shape correspondence. In
Computer Graphics Forum, volume 30, pages 1681–1707.
Wiley Online Library, 2011.

[53] Remco C Veltkamp and Michiel Hagedoorn. State of the
art in shape matching. In Principles of visual informa-
tion retrieval, pages 87–119. Springer, 2001.

[54] He Wang, Kirill A Sidorov, Peter Sandilands, and Taku
Komura. Harmonic parameterization by electrostatics.
ACM Transactions on Graphics (TOG), 32(5):155, 2013.

[55] Yunhai Wang, Shmulik Asafi, Oliver van Kaick, Hao
Zhang, Daniel Cohen-Or, and Baoquan Chen. Active
co-analysis of a set of shapes. ACM Transactions on
Graphics (TOG), 31(6):165, 2012.

[56] DRSM Wilton, S Rao, AW Glisson, D Schaubert, O Al-
Bundak, and C Butler. Potential integrals for uniform
and linear source distributions on polygonal and poly-
hedral domains. IEEE Transactions on Antennas and
Propagation, 32(3):276–281, 1984.

[57] Zoë J Wood, Peter Schröder, David Breen, and Mathieu
Desbrun. Semi-regular mesh extraction from volumes. In
Proceedings of the conference on Visualization’00, pages
275–282. IEEE Computer Society Press, 2000.

[58] Jianhua Wu Leif Kobbelt. Structure recovery via hybrid
variational surface approximation. In Computer Graph-
ics Forum, volume 24, pages 277–284. Wiley Online Li-
brary, 2005.

[59] Dong-Ming Yan, Wenping Wang, Yang Liu, and
Zhouwang Yang. Variational mesh segmentation
via quadric surface fitting. Computer-Aided Design,
44(11):1072–1082, 2012.

[60] Rio Yokota and Lorena A. Barba. A tuned and scalable
fast multipole method as a preeminent algorithm for ex-
ascale systems. CoRR, abs/1106.2176, 2011.

20

	Introduction
	Related Work
	Motivation
	Overview
	Generating an Offset Mesh Proxy
	Texturing the Offset Mesh Proxy
	Texture Mapping by Tracing Electrostatic Field Lines
	Physical Background
	Field Lines for Texture Mapping
	Dipole versus Monopole Fields
	Potential Calculation on Triangles
	Fast Charge Calculation
	Field Line Tracing

	UV-Correction at Chart Boundaries
	Evaluation & Discussion
	Offset Mesh Proxies
	Monopole vs. Dipole Potential Calculation
	Robin Hood Iteration
	Field Tracing
	Numeric Integration

	Examples
	Comparison with Maya UV-Generators
	Limitations & Future Work
	Triangle Intersections
	Narrow Surfaces
	Non-Bijectivity
	Triangle Soups with Boundary

	Conclusion

