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A B S T R A C T

We introduce an interactive comic chat system that seamlessly integrates visual
storytelling with text-based real-time interaction to enhance digital communica-
tion. Our approach employs generative AI to create interactive comics, support-
ing the easy creation of personalised characters and scenes, dynamically adapting
these personalised characters and environments to chat content and additional
user input, automating the generation of visually coherent comic panels, and
overcoming the limitations of previous comic chat systems that are limited to
pre-defined graphical elements. We propose algorithms for generating charac-
ters and panel backgrounds using generative AI, incorporating facial expressions,
poses and thematic elements, and effectively placing characters and speech bub-
bles in comic panels. The continuous changes in character details and comic
scenes provide visual cues that help viewers perceive the sequence of comic pan-
els as a fluid and ongoing action, making the scenes feel dynamic and alive. In
addition, the chat system incorporates interactive elements such as chat bots and
themed rooms to increase user engagement. In an extensive user study, we show
that our novel system significantly enhances users’ ability to convey emotions
and engage in meaningful interactions online, and that users appreciate the wide
range of self-expression options and personalised characters that allow for more
nuanced communication. The versatility of generative AI approaches makes our
platform suitable for a wide range of applications beyond mere chatting, in-
cluding education, reducing language barriers and character-driven role-playing
games.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Communication on digital chat platforms loses many
of the non-verbal aspects of interactions, such as tone of
voice, expressions, and body language, resulting in conver-
sations being prone to interpersonal misunderstandings.
To bridge the gap between personal and remote exchanges,
visual clues such as emoticons, are commonly used to clar-

1Equal contribution.

ify the tone of messages and convey nuances like irony.
Subsequent advances in digital platforms have evolved these
simple emoticons into more detailed graphics, such as yel-
low smileys, enriching the visual aspect of text-based in-
teractions and ultimately leading to the development of
emoji, which expand the standard set of smileys into thou-
sands of small, text-sized graphics. In current chat sys-
tems, users also show great interest in personalizing mes-
sages with custom emoticons and a larger selection of sticker
graphics that extend the selection of predefined smileys.

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
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Automatic layout of characters and
speech bubbles on dynamic backgrounds

User-friendly GenAI-based design of
distinctive characters and scenes

A forest elf wearing a hoodie ...

Dynamic adaptation to emotions, themes
and conversation topics

Fig. 1. Our interactive comic chat system integrates Gen-AI-based design tools, dynamically adapts characters and scenes
to user input, and features a novel layout algorithm to generate panels.

The recent developments in deep generative models for
image synthesis, especially with the open source release of
Stable Diffusion[43], provide the ability to create appealing
graphics from simple text prompts, opening the possibility
of building powerful visual storytelling tools and communi-
cation systems that go beyond simple smiley graphics and
standardized emoticons. In this paper, we explore how
to use such models for communication by creating comics
from text chats.

In 1996, Microsoft presented an interactive comic chat
system [29] that automatically added visual representa-
tions to chat dialogue in the form of automatically gener-
ated comic panels depicting the people in the chat. Today,
Microsoft Comic Chat looks outdated because its simple
look does not fit well with today’s expectations for high-
resolution graphics, but the idea is as appealing today as
it was in 1996, even if it needs a makeover. So we are
building a new comic-based chat that takes advantage of
modern technological advances, including generative AI,
to give the idea a new spin.

Despite its success, a follow-up paper by Kurlander in
1998 [28] highlighted some lessons learned from the first
version that remain relevant and are directly addressed by
our new approach to the topic. One of the main sources of
confusion in Microsoft Comic Chat was the small number
of available characters, which led to multiple people using
the same character in the same chat room, so one of the
most requested features was the ability to draw your own
characters. With our generative approach, user-created
characters are one of the main features that make our chat
interesting, as there are endless possibilities to design your
own character using generative image AI. As part of our
chat system, we developed a character design tool that is

not constrained by a limited number of options, and by
providing the option to create diverse characters, one has
the means of self-expression, anonymity, and the possibil-
ity to present oneself differently in different contexts. It
is known that the way people present themselves can have
a profound effect on their self-perception and identifica-
tion with the avatar and the group their avatar belongs to
[40, 51], so we leave it up to the user to decide if they want
to look similar or different from their usual appearance, or
even create a completely new persona like a fantasy char-
acter. By allowing more than one character per user, users
do not have to stick to one character idea, but have the
flexibility to try out many different concepts and identities.

Another lesson learned from Microsoft Comic Chat was
that people tend to play act the role of their character,
so the design of the chat system influenced the kind of
chats the users had. To build on this, our chat rooms
offer a variety of (comic inspired) topics, illustrated by
dynamically generated backgrounds that provide a consis-
tent theme for the room. Characters and environments
maintain their core characteristics throughout the chat,
but adapt dynamically based on chat content and user in-
put. These changes include expressing character emotions,
changing poses and accessories, and external influences
such as weather and lighting. These continuous changes
provide visual cues that help viewers perceive the sequence
of comic images as fluid and ongoing action, making the
scenes appear lively and animated.

For backgrounds, using a generative image model means
an infinite number of scene variations instead of a limited
set of background images, and we can also adapt the scene
shown in the background to the topics discussed in the
chat. For example, an outdoor scene that normally depicts
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a sunny day in the park can become rainy when users dis-
cuss bad weather. In addition, we can support different art
styles in our scenes and provide a number of additional ex-
pressive features such as personalized memes. This opens
up entirely new ways to quickly express and communicate
individual emotions and themes visually. Last but not
least, Microsoft Comic Chat modeled a very specific comic
art style, including a relatively rigid bubble style, with only
one bubble per character in each panel. It was optimized
for small panels and for placing bubbles close together at
the top of the panel. Our dynamic layout algorithm takes
advantage of the larger screens available today and a vari-
ety of art styles with a more diverse panel composition. To
do this, we design a more style-agnostic bubble style that
focuses on readability and common modern comic panels.

Besides being entertaining, we believe that a comic chat
can also help improve online communication. The many
character personalization options allow people to express
themselves, present themselves in the way they feel most
comfortable, or try new things in a playful way. By us-
ing emotions expressed by the character, users can easily
communicate their mood and the intended tone of conver-
sations. We also believe that such a system could be help-
ful for neurodivergent people who may prefer online com-
munication to face-to-face communication in some cases,
but feel that text alone cannot communicate as much as
face-to-face communication. In addition, images transcend
language barriers and can, for example, make reading ma-
terials more accessible to non-native speakers.

Our main contributions are:

• A chat system based on our automatic comic gener-
ation that gives users a rich set of ways to visually
express their emotions through dynamically adapted
character images.

• A user-friendly Gen-AI-based design tool for person-
alized characters and scenes.

• A method for dynamically updating characters and
scenes based on emotions, themes, memes, and con-
versation topics.

• A novel algorithm for optimal placement of char-
acters and speech bubbles in dynamically updated
comic panels, ensuring a clear reading order after
each update.

• An evaluation of the system, including user percep-
tion of our comic-style representation of chat conver-
sations.

2. Related work

People have been using the Internet as a medium for
real-time text communication for decades, with IRC (In-
ternet Relay Chat) [38] being one of the first popular chat
systems, and many other text-based chats following, some
using dedicated applications similar to IRC, and others im-
plemented as web apps that run in the browser. The range

of uses of chat systems is wide, from work communication
over casual chatting to dating apps.

As an alternative to purely text-based chats, Microsoft
released V-Chat in 1995, which allowed users to place an
avatar on a background image showing a representation of
the chat room, and in 1996 Microsoft Comic Chat [29, 28],
an IRC client that automatically creates comic panels from
a line-based text chat while remaining compatible with
other clients that participate in the chat without comic
visualization. The chat automatically creates panels, and
users can manually select emotions that change the facial
expression and pose of their comic character to convey
the tone of the conversation. The messages are placed in
speech bubbles, and the characters are placed so that they
look at each other when in dialogue. Comic Chat was
distributed until 1999 even though its usage declined over
time. As another visual chat system, Itou et al. proposed
a manga-style chat system in 2013 [25, 24], which allows
people to choose different manga panel options, but is also
limited to a combination of a predefined set of visual ele-
ments.

2.1. Automatic comic generation

Comic generation combines the development of visual
art and sequential layout to create stories within a struc-
tured panel format. This process involves the controlled
blending of text and images to communicate a variety of
topics and emotions. Different works deal with the gen-
eration of artistic comic styles from a captured image of
a scene [55] or from a drawing and a style reference using
style transfer [31, 54, 57]. To bridge the gap in conveying
emotions through text, [3] introduced a novel approach by
generating speech bubbles that change shape based on the
emotions of the speaker as predicted from voice recordings
using Generative Adversarial Networks (GANs). In this
context, [14] developed a technique for the automatic po-
sitioning of speech bubbles, a concept which also has been
explored in [39] for captioning group conversations.

Since choosing the right comic layout is of great im-
portance for storytelling and visual impact, and finding a
good layout can be time-consuming, [8] proposed to auto-
mate the layout process in manga creation, and in their
subsequent research [9] focused on generating the compo-
sition of subjects and speech bubbles. While these meth-
ods deal with the individual artistic elements and building
blocks of comics, other works also address the creation
of entire comic strips. Several approaches using different
types of source materials have shown diverse applications
for automatic comic generation. While [47, 20] proposed
comics generated from source code, [12] transformed ac-
tivity data into cartoon-style diaries, and [21, 53, 27, 13]
converted movies into comics, demonstrating a variety of
inputs that can be adapted into a comic form. To simplify
the automated generation of comic strips, [1] proposed the
Comic Strip Description Language (CSDL) to describe the
elements and layout of comics.
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2.2. AI chatbots for roleplaying

One of the first systems using language models for
role playing was AIDungeon [37, 23] which started as a
fine-tuned GPT-2 model [42] distributed as a Jupyter-
Notebook, which later evolved into a role playing web-
site [30] that does not require the users to run the lan-
guage model themselves, but uses the OpenAI API on the
server-side. With the advent of stronger open large lan-
guage models (LLM) such as Llama [49, 50, 16], a new
wave of AI roleplaying systems emerged, both hosted so-
lutions that run models server-side and provide easy to use
websites and mobile apps, and software projects like Sil-
lyTavern [15] for using LLMs for roleplaying on consumer
hardware. These systems allow users to roleplay in a text
chat, although they usually provide a profile image for the
chatbot and sometimes a matching background image for
the chat.

3. Overview

Figure 1 illustrates our interactive comic chat system
which integrates Gen-AI based design tools and image gen-
eration, including conversation topics, emotions and other
context to create lively comic panels. It features a novel
layout algorithm for arranging characters and speech bub-
bles in dynamically updated comic panels. The subsequent
sections are organized as follows: In section 4 we analyze
the capabilities of diffusion models for automatically gen-
erating comic-style images, in section 5 we describe the
character and scene design process and narrative image
generation based on user-selected emotions and automat-
ically detected topics, and in section 6 we describe how
comic panels are dynamically generated from text input
using our novel layout and speech bubble placement algo-
rithms. After that, we evaluate our system and present
a user study in section 7. Limitations and future work
are discussed in section 8 before we conclude our work in
section 9.

4. Generative AI for dynamic content

We leverage advances in generative AI, which has seen
significant growth in recent years. These tasks include im-
age generation, selective addition of new concepts, and
controlling image generation by other means than text
prompts. The techniques used are Stable Diffusion [43] as
the image diffusion model, enhanced with low-rank adap-
tations [22] to add new styles and characters, and Con-
trolNets [58] to enforce specific poses. We also incorporate
large language models (LLMs) to generate prompts, clas-
sify image tags, and implement chatbots.

We use version 1.5 of Stable Diffusion as text-to-image
model, of which fine-tuned versions are still popular and
provide good quality at high speed, although larger models
like Stable Diffusion XL (SDXL) are available and will be
interesting for an future upgrade, possibly with extensions
like SDXL Turbo [46] or SDXL Lightning [32]. There are a

number of other new models that are interesting for future
work (see sec. 8), but they are too slow for our purposes
on current hardware.

The used diffusion model is conditioned by text inputs,
called prompts in the rest of the paper, and the OpenPose
[10] ControlNet. By using OpenPose, we always have the
information about the location of the pose keypoints and
can adjust them as needed. We also use other Control-
Nets, e.g., for conditioning with lineart, when fine-grained
control over image generation is desired, and the Tile Con-
trolNet to improve image quality when rendering large im-
ages. We utilize various LoRA models to add styles and
characters, and to extend the base model with a Latent
Consistency Model (LCM) [34]. As language model, we
chose a fine-tuned Mistral 7B model [26], which proved to
be a good compromise between quality and speed.

4.1. Stable Diffusion model

Fig. 2. Different Stable Diffusion models have significantly
different styles. The characters in the image were rendered
using the same prompt and seed with three different diffu-
sion models.

For Stable Diffusion, there is a wealth of different mod-
els with different image styles available. Next to a few
general-purpose models, many models specialize in a par-
ticular styles, such as photorealistic images, anime styles,
semi-realistic images, or 3D images similar to computer
games or 3D animated movies, as shown in Fig. 2. For
our chat, we decided to use the “Cartunafied” model since
we were looking for a comic aesthetic and because anime-
style models are trained on tags rather than full-sentence
captions, which makes it easier to create and (re)combine
prompts.

Low-rank adaptations (LoRA)

Low-Rank Adaptation (LoRA) [22, 44] allows efficient
fine-tuning of large pre-trained models by updating few
parameters, allowing new content to be added to the base
model without replacing existing content. The much smaller
LoRA models can be dynamically added or removed, al-
lowing the model to change styles and add new characters
(see Fig. 3) with minimal computational overhead. In gen-
eral, one can combine a base model with several different
LoRA models during image generation, and decide which
LoRA models to load on an image-by-image basis.
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Fig. 3. Left: An image generated using the “Cartunafied”
Stable Diffusion model with a LoRA model we trained on
the Microsoft Comic Chat sprites for the character “Dan”.
Right: Two of the 27 original 155× 224 sprites used to train
the LoRA model.

4.2. Prompting anime models with Danbooru tags

In contrast to many other Stable Diffusion models,
which are trained on datasets containing images from the
web together with their captions or adjacent text, which
usually follow a grammatical structure, anime models are
mainly trained on the Danbooru dataset [2], which con-
tains a large number of anime images with high-quality
community-maintained metadata in the form of short tags
assigned and maintained by members of the Danbooru im-
age board site. These Danbooru tags describe the con-
tent of each image, as well as metadata about quality
(e.g., highres) and issues such as incomplete tagging (e.g.,
character request). The community also links tags to
their synonyms so that all tags are used consistently and
each concept is represented by a unique tag from a known
list of available tags.

All images in the Danbooru dataset have tags about
the following categories: meta, artist, copyrights (e.g. the
anime he characters are from), character, general. The
general parts contain not only character-related tags like
blonde hair, but also background details of the image
that one would usually not think about directly, like open
door, leading to captions that group images by things that
can be seen in them. Diffusion models trained on these
tags thus have the advantage that each training image was
well-tagged, and that each concept has a unique keyword,
so that training prompts are not fragmented by synonyms.
The major advantage for our purposes is that the models
were trained on comma-separated tags, which can be easily
split and combined.

The overall structure for a character prompt to create
an anime character thus usually starts with either 1boy or
1girl2 and then lists visible properties such as hair color,
clothing items, eye color, accessories, etc. as a comma-
separated list of tags. The base prompt for a charac-
ter can then be dynamically combined with further tags
to change its appearance. For example, we allow users
to choose which emotion to express by simply appending

2Other or unclear genders are sometimes tagged as 1other, but
the tag does not work very well with image models

tags related to the emotion to the character prompt, as
shown in Fig. 4. We also reinforce poses with tags like
solo, cowboy shot, standing, or for face-only images,
face, portrait, and to improve image segmentation, we
add simple background, grey background to prompts
for character sprites, see Fig. 10.

happy sad scared

1girl,

green hair,
pointy ears,

...

1boy,

samurai,
shoulder armor,

...

1girl,

explorer,
wide-brimmed

hat,
...

Fig. 4. We can change the expression of characters by ap-
pending tags to their base prompt. Our chat uses portrait
images like these as personalized previews in the emotion
selection dialog.

Image models also have a negative prompt to specify
things that should not be in the image, where we use meta-
tags like bad anatomy and low quality, which mark low
quality images in the Danbooru dataset, to steer the dif-
fusion model away from bad generations. We also use the
negative prompt to enforce a negative bias towards unde-
sirable image content such as nudity.

4.3. Considerations in image generation

In the context of unsupervised image generation for
custom prompts, our approach acknowledges the inherent
challenges posed by the absence of manual quality control.
Typically, users creating high-quality AI images engage in
multiple iterations, trying different seeds, using inpainting
to rectify artifacts, and making adjustments in external
graphics programs to achieve the desired result. Since our
system has no way to automatically evaluate the quality of
the generated images, it relies on the first generated image,
which inevitably means that some images will exhibit vis-
ible artifacts. By choosing an anime model, we generate
simpler graphics than photorealistic models, minimizing
the impact of imperfections because the stylized nature of
anime graphics is more forgiving of artifacts that would
be more pronounced in realistic images. Moreover, we be-
lieve that users will value the ability to create personalized
graphics over selecting from a limited set of pre-designed
characters, even if they are not of the same quality as man-
ually created images.
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4.4. Image generation optimizations

To improve quality, we use features such as latent up-
sampling for higher resolution images, the OpenPose Con-
trolNet to ensure the proper poses, and the Tile Control-
Net when pre-rendering high-quality backgrounds.

To improve rendering speed, we use a Latent Consis-
tency Model (LCM) [34] which allows us to reduce the
number of diffusion steps from 20-30 to 4-7 at the cost of
a slight loss in quality. In our experience, using LCM is
feasible for dynamic backgrounds, while character sprites
that can be reused can be worth the cost of rendering with-
out LCM. We can easily switch at runtime between using
it or not by using a LoRA model for the LCM [35].

5. Chat system

We use the automatic comic generation methods de-
scribed in sec. 4 to build a web-based group chat in which
users can chat using their self-designed graphical char-
acters, in a variety of themed rooms. Fig. 5 shows an
overview of the system and the following sections describe
the steps for creating comic panels, which include creating
character images, creating the panel backgrounds, and dy-
namically placing and moving the characters and speech
bubbles in these panels as users write new chat lines.

5.1. Character design

The first step for new users is to create a character.
The look of the character and if they want to present them-
selves or create a fantasy character is completely up to the
users. To facilitate getting started, we offer a character
creation page, that provides different options for defining
characters:

• Create a random character.

• Create a character from a text description.

• Customize a pre-defined character template.

• Skip directly to the tag-based character editor.

The first two options are implemented by using an LLM
to generate a tag-based image model prompt. In all four
options, the user is then redirected to the character editor
which provides a preview image and allows users to fur-
ther customize the character to their liking. Screenshots
of these pages are included in the supplemental material.

5.2. A user-friendly character editor

In the tag-based character editor, the user is presented
with a character sheet like the ones artists use for concept
art, and input fields for the image model prompts, in which
the user can iteratively add and remove tags until the char-
acter sheet looks like what they imagined their character
to look like. When the user is finished, the preview im-
ages used in the chat interface (see fig. 4) are generated,
and the character is ready to join the chat. The Danbooru
tags for character prompts are easy to combine in princi-
ple, but may not be intuitive for users who have never seen

an example of a tagged image, so we worked with a user
experience expert to create an interface that focuses on
providing interactive lists of example tags for each section
(e.g., hair, eyes, clothing) that can be added and removed
from the prompt by clicking on them. This way, users can
not only define basic characters using the example lists,
but also get an idea of what the tags look like, so they
can figure out tags that are not listed as examples. We
also give a brief explanation of how to use tag weighting
in prompts, how to use the negative prompt, and caveats
such as contradictory tags.

Characters from descriptions

To create characters from descriptions, we use an LLM,
so the user can write a simple description and our system
generates the tags for the image model. A prompt like “A
boy with short red hair and freckles wearing a blue coat
and brown shorts” results in the tags 1boy, red hair,

freckles, short hair, blue coat, brown shorts, which
follow the description verbatim. A description that only
gives a basic idea and leaves the looks to the LLM, like “A
mysterious superhero who rescues marine animals” also
works and results in the tags 1girl, mask, cape, spandex
suit, blue and white colors, animal motifs, flippers,
diving suit, goggles, rescue equipment, strong and

athletic build, blonde hair. The avatars of the two
example characters are shown in Fig. 6.

Personalization using LoRA models

Optionally, we offer users to use personalized avatars
using LoRA models (see sec. 4.1) trained on their pho-
tos. Since LoRA models work well for style transfer, the
resulting images still match the comic look of our chat,
even though they were trained on photos. Currently, re-
quests for personalized avatars are processed manually to
ensure high quality results, but future work could consider
automating the process using methods such as those pro-
posed by Avrahami et al. [5]. Other ways to personalize
characters are to compute text-encoder embeddings from
reference images using textual inversion [18] or to use a
reference image as an (additional) image prompt using IP-
adapter [56].

5.3. Chat rooms

The chat is divided into several public and unlisted
rooms and currently does not provide a private message
feature. Chat rooms have a number of different scenes that
are used when creating panels, which are defined by image
model prompts that describe the backgrounds, and usually
have a common theme related to the room. The room
itself can also add details that are applied to all scenes of
the room, such as a pixelation LoRA model for the video
game room, and details that are applied to characters, such
as adding christmas hat to the prompts of characters
chatting in the Christmas room.
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Message

Emotion 
Selection

Chat 
Message

Emotion 
Selection

Alternative 
Panel

Alternative 
Panel

LLM

Topic 
Detection

Speech 
Bubble 

Placement

Character 
Generator

Panel Construction

Meme 
Generator

Character 
Tags

Character 
Description

Tag 
Customization

Scene 
Description

Personalized 
LoRA

Comic Export

Background 
Generator

LLM Character Chatbots and other Users

Design Tools

Scene 
Tags

Comic Chat Interface

Fig. 5. Overview of how the different components of our comic chat system and design tools interact. Yellow fields mark
user input.

Lyria Cynthia Ryo Seraphine Riku Amelia

Fig. 6. Characters created using our character editor: Lyria
(pre-made character), Cynthia (a user-edited version on
Lyria), Ryo and Seraphine (random generated characters),
Riku (the freckled boy described by his appearance) and
Amelia (the superhero created using a role description).

Fig. 7. Rooms can have additional prompts that modify
foreground and background. The “Monochrome nature”
room uses the same scenes as the nature room (see Fig. 1),
but adds a monochrome tag to scene and character prompts
and the Christmas room adds the tag christmas hat to char-
acter prompts.

5.4. Using the chat

To guide new users through the features of the chat,
upon registration users are directed to the character edi-
tor to create a first character for participating in the chat.
Once a user has finished creating their character, a tu-
torial room is pre-selected on the main page that helps
to introduce new users to the chat features in an interac-
tive way. In the tutorial room, a chatbot guides the user
step-by-step through the different features, waiting after
each instruction for the user to try the function before ex-
plaining the next feature. The steps include, for example,

selecting emotions and posting memes (see sec. 5.5), but
leave it up to the user which emotion to select or which
captions to use for the meme they need to create in order
to progress through the tutorial.

While it is exciting for users to use personalized charac-
ters in rooms with dynamically generated backgrounds, we
additionally leverage the possibility to adapt the graphics
to the content of the chat. For emotions, we implement an
emotion chooser similar to Microsoft Comic Chat, which
allows the user to change the expression of their charac-
ter, as well as detecting common emoticons like :D, lol,
>.< and others, but we also detect conversation topics to
adjust the background scene and the characters in the fore-
ground. For example, if someone mentions rain, the back-
ground image changes to one with rain and the speaking
character wears a raincoat or holds an umbrella, as shown
in Fig. 1 and 10. Currently, we still use a manually main-
tained list of topics because detecting topics and creating
consistent image model prompts from them is a challeng-
ing task. For example, one wants to avoid showing a happy
background for a sad topic due to inaccurate topic detec-
tion, and some other conversation topics may be difficult
to visualize. It would require a lot of tuning to ensure
that an LLM can not only reliably extract topics, but also
generate image model prompts that result in high quality
images related to the topic.

5.5. Alternative formats

An alternative format to comic panels is posting In-
ternet memes. The typical meme format contains a funny
image, often a pop culture reference, with bold captions at
the top and bottom of the image. In our chat, meme panels
stand for themselves and do not contain speech bubbles.
Instead of using the original meme image and just adding
captions, as most meme generator sites do, we use a col-
lection of LoRA models trained on various internet memes
that allow us to reproduce the well-known image with the
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Fig. 8. Left: Hana is in the math lady meme. Right: Lyria
uses the Pepe Silvia meme.

person in the image replaced by the personalized charac-
ter of the user. For some memes, an alternative to using
LoRA models trained on the original images is to use Con-
trolNets to combine, for example, a given line art sketch
and a given pose to guide the image generation to an im-
age that is recognizable to people who know the original
meme. Fig. 8 shows examples in which the generated im-
ages contain our characters in two different meme formats
that would normally use unmodified movie screenshots as
backgrounds.

5.6. Integration of large language models

We implement several features that facilitate creation
of characters and rooms using LLMs. For character cre-
ation, our system can generate image model tags from a
free text description by prompting an LLM to extract tags
for the visual properties of the described person, in the tag-
based character editors for characters and room scenes, we
provide a “suggest more tags” feature that uses the LLM to
generate further tags to enhance the image model prompt,
and we use the LLM to detect tags that might lead to not-
safe-for-work images. Scenes can also contain a textual de-
scription instead of an image model prompt, which is then
used to generate image model prompts using the LLM, so
that we can generate a large number of different prompts
from a single description of a general scene idea. Some
rooms also feature chatbots, which are assigned a role by
a short character description, allowing them to role-play
their character traits with LLM-generated responses, emo-
tions, and even memes. Finally, we summarize chats when
exporting them as comics (as described in sec. 6.6) to auto-
matically generate a catchy title that matches the content
of the conversation.

6. Dynamic comic layout

In comic book design, the traditional approach to speech
bubble placement requires that the panel layout be fixed
before the speech bubbles are placed, including static po-
sitions for characters and their lines of dialogue, but these
a priori methods are unsuitable in scenarios where future
character interactions are unknown. To overcome this limi-
tation, we propose a dynamic method for placing or updat-
ing each character and speech bubble immediately when

the corresponding line of text is sent by the user. For the
best visual flow and coherence, we place speech bubbles
in a clear reading order with a dynamic speech bubble
tail shape, close to the speaking character, without over-
lapping or obscuring important visual information of the
panel image. In this way, our method allows the step-by-
step construction of panels for new dialogue without major
layout shifts, creating a composition that resembles typi-
cal comic panels. Because our layout algorithm is designed
to be flexible, it easily adapts to different text directions
and scripts, such as right-to-left scripts (e.g., for Arabic
reading order) by reversing the order of vertical bubble
placement and panel order. Similarly, our algorithm effi-
ciently accommodates vertically oriented scripts, such as
those commonly used in Japanese manga, by extending the
speech bubbles vertically and changing the text wrapping
to match this expectation.

6.1. Panel generation

Fig. 9. Left: When we update a panel we alternate between
different cutouts of a larger background image. Right: For
some conversation topics we add related keywords like night

or rain to the background prompt.

We create a new panel when a chat starts, or when
either the speaker or the speech bubble for the new line
does not fit into the current panel and otherwise we update
the newest existing panel of the room with the new chat
line.

To create a new panel, we select a random scene prompt
from the scenes of the room and use it to draw the back-
ground image. For normal panels, we render the back-
ground at twice the panel size, cache the rendered image,
and each time the panel is updated, we scale the image
down by a random factor between 1 and 2 and then create
a random cutout to make it look like the characters are
moving around the scene, similar to [29], see Fig. 9 and
the bottom row in Fig. 1. For panels influenced by a topic,
we currently always generate new images at panel size and
do not use our cutout approach to make these panels more
dynamic. After we have created a new panel or when we
update an existing one, we use algorithm 1 to place the
speaker in the panel.

6.2. Character rendering
To render a character, we first assemble its prompt

from the base prompt, the chosen emotion and accessories
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as shown in Fig. 4, and possibly an additional prompt
defined by the room (cf. Fig. 7). Next, we need to figure
out the viewing direction of the character in order to select
a pose using the following heuristic:

• If the character is the first character in the panel and
is addressing another character, we use a right-facing
pose because the next character will be placed to the
right.

• If the character is not yet in the panel but addressing
a character in the panel we use a left-facing pose,
because it will be placed to the right of the addressed
character.

• If the character is already in the panel and talking
to another character who is already in the panel, we
have it face the other character, determining whether
it is left-facing or right-facing by the order of the
characters in the panel.

• Otherwise, we let the character look at the viewer.

A future direction is to incorporate more of the conversa-
tion flow into this heuristic when no character is directly
addressed, e.g. using the LLM to analyze who is talking
to whom.

Fig. 10. We use an OpenPose skeleton to reinforce poses
using a ControlNet and render the characters with the ad-
ditional tags simple background, grey background which reli-
ably yield a static grey background that works well for back-
ground segmentation using ISNet. The last image shows an
image that uses the same pose and seed, but has the tag
rain coat added to the prompt because of a weather con-
versation topic.

Once we know the viewing direction, we use the prompt
and a random pose for the chosen viewing direction to cre-
ate a character image, and remove the image background
using ISNet [41] as shown in Fig. 10. To avoid plac-
ing speech bubbles over the faces of the characters, we
also store the face position, which is calculated from the
bounding box of the OpenPose face keypoints of the se-
lected pose, shown as white box in the skeleton image.
We cache the generated character sprites to speed up later
generations that use the same pose, but use a set of multi-
ple poses per viewing direction to vary the sprites in each
panel. With different skeletons, viewing directions, emo-
tions, and additional changes based on conversation topics,
we generate a large number of different character images.

6.3. Character placement
We assume a fixed width for our characters, regardless

of the transparency mask of the actual character, which

is the same for all characters, because we always use the
cowboy shot perspective (as shown in Fig. 2 and 10) for
characters in chat panels. This not only makes it easier
to avoid overlaps, but also ensures that the characters are
not packed too tightly into the panel.

Fig. 11. New characters are always placed in the green area
to the right. If there is not enough space for a new char-
acter, other characters are moved to the left, reducing the
space between them (marked in blue).

Algorithm 1 then updates the panel as follows. New
characters are always placed to the right to extend the
group of characters without disrupting the previous or-
der of characters, and as an easy way to ensure that a
character that can be placed in the panel can also have
a speech bubble placed in the correct reading order. If a
panel has enough space between the rightmost character
and the right panel boundary, we place the character at
a random position within that area, maintaining the posi-
tion of the other characters. If the area is too small, but
the total free space in the panel would fit another charac-
ter (see Fig. 11), we move the other characters to the left
to make room for the new character using algorithm 2. If
the new character does not fit into the existing panel, we
create a new panel and can then place the character there.

6.4. Speech bubble placement

After the characters are placed in the panel, we place
the speech bubbles near the heads of the corresponding
characters, with the tail pointing toward the mouth, as
determined by the face bounding box using the following
algorithm.

When we have already placed a set of bubbles B =
{B1, . . . , Bn}, each associated with a character c(Bi) within
the panel, we need to find a free space for the new bub-
ble Bn+1, and since the bubbles are created dynamically
whenever a user writes a new line, the total number is not
known in advance. Since we only know the position of
B1, . . . , Bn at the time bubble Bn+1 is placed, and cannot
predict which positions would be suitable for further bub-
bles of yet unknown text length, our algorithm can only
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Fig. 12. The bubble layout must follow an intuitive reading
order to avoid misunderstandings.

heuristically place bubbles in a way that leaves room for
more bubbles. The bubble placement also must meet the
following constraints:

• Bn+1 should be placed near the face of the corre-
sponding character to create a visual association be-
tween the bubble and the speaker and to facilitate
tail placement.

• The bubble layout should follow the left-to-right,
top-to-bottom reading order of the English language
as shown in Fig. 12.

• Bubbles must not intersect with character heads,
speech bubbles of other characters, or the boundary
of the panel.

• Bubbles belonging to the same speaker may overlap
as long as the text is clearly separated.

Although the reading order in principle forbids placing
bubble Bn+1 with its top edge higher than Bn (dashed line
in Fig. 13), we found that this constraint can be relaxed
based on the horizontal separation of the bubbles, so we
extend the admissible upper limit for Bn+1 by a third of
the height of Bn to avoid a rigid, stair-like appearance.

To place a new bubble, we first determine the size of
the bubble bounding box by calculating the text bounding
box and adding the padding needed to enclose the text box
with a bubble. For a balanced bubble size, we calculate
the text width using the algorithm from [29] and center the
lines inside the bounding box. Next, we calculate the con-
straints on where the bubble bounding box can be placed
without intersecting other image elements. To do this, we
calculate the admissible area in which the upper-left ver-
tex of the bounding box can be placed (shown in Fig. 13)
using algorithm 3. The left side is defined by the right
edge of the bounding box of the previous bubble, the right
side is the right edge of the speaker’s character sprite, the
bottom is defined by the uppermost face bounding box,
and the top is defined by the top of the previous bubble

plus one third of the height of the previous bubble. When
placing the bubble, we further reduce the limits so that
the bubble cannot intersect the panel boundaries.

We place subsequent bubbles created for the same speaker
close to the previous bubble, allowing some overlap, de-
fined by a fixed vertical distance dv that ensures the text
does not overlap but is clearly recognizable as a contin-
uation of the previous text, and a minimum horizontal
distance dh that ensures a continuous reading order, see
Fig. 14. Such merged bubbles are common in comics and
make the conversation look more coherent when the same
person is speaking twice. For such groups of bubbles, only
one tail is drawn, connected to the bubble closest to the
speaker.

If a bubble cannot be placed in the top row due to
these constraints, we continue by placing bubbles below
the character faces using a similar algorithm, except that
we then use the lowest face bounding box as the upper
limit for bubble placement. In particular, if we add a bub-
ble for a character to the left of the previous speaker, we
must always change the row to maintain the correct read-
ing order. If a bubble for a long text does not fit in the
available space, we try to split it into a smaller bubble that
can be placed, and create additional bubbles for the rest of
the text. This is especially relevant for bubbles that would
not even fit into a new panel, and could not be placed at
all without breaking them up.

Fig. 13. The current bubbles and head bounding boxes
determine the free space where algorithm 3 places new
bubbles. The dashed line shows the upper limit for non-
increasing placement, while the solid lines show the limits
of the slightly relaxed requirement. The upper left corner
of the bounding box must be inside the blue shaded area.
Note that the origin is in the upper left corner of the panel.

6.5. Drawing speech bubbles

We modeled our speech bubble design after modern
comics, but kept it as style agnostic as possible to allow for
the variety of art styles that image models can accommo-
date. We focus on left-to-right reading order and generate
bubbles with the major axis of the roughly elliptical shape
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in the horizontal direction. To reproduce a typical bubble
shape, we use Bézier curves to create an elliptical shape
around the text. The outline consists of four quadratic
Bézier curves defined by a rectangle around the text with
padding to avoid text outside the shape. The start and
end points of the curves are placed at the midpoints of
each edge, and the control points are placed at the corners
of the bounding box.

Fig. 14. When a character speaks twice, we combine the
bubbles while still maintaining a clear reading order and
preventing text overlap. A tail is only attached to the bub-
ble closest to the speaker.

The bubble tail is drawn using two Bézier curves, each
connecting a point on the bubble boundary to the tail tip
T near the speaker’s face, forming a curved tail point-
ing toward the face of the speaker, as shown in Fig. 14.
Whether the tail points inward or outward depends on the
relative position of the speaker, and the starting position
is randomly chosen on the side of the bubble closer to the
speaker to ensure a clear visual connection. The width
of the tail depends on the ratio of the length of the tail
to the width of the bubble, which has proven to have a
aesthetic look. The curvature of the Bézier curves is cal-
culated based on the angle to the speaker and the slope
between the curve start points on the bubble.

6.6. Comic strip export

Fig. 15. Users can download their chats formatted as typical
comic book pages with an automatically generated title.

For many purposes, it is beneficial not only to chat
interactively, but also to be able to download the resulting
comic, allowing users to revisit the discussion, preserve the
insights of the conversation, and enjoy the humor in the
panels. In addition to a download button for individual
panels, we provide an export function that creates comic
pages from the conversation by arranging the panels in
a grid, splitting longer conversations into multiple pages,
and using the LLM to generate a catchy title from the chat

show on the page. Figure 15 shows an example comic strip
with three panels.

7. Evaluation

strongly disagree neutral strongly agree

I felt burdened while
choosing emotions.

I had a sufficient
number of emotions

to choose from.

I could understand emotions
or intentions from

other people’s messages.

I could express my
emotions or intentions well

through my messages.

Itou et al.
Ours with ES
Ours w/o ES

Fig. 16. Comparison of the emotional expressiveness in our
comic chat and the manga chat system by [24]

To evaluate our system in terms of usability, emotional
expressiveness, effectiveness of text-based design tools, and
panel generation speed, we made a prototype of our chat
available in closed alpha and beta testing phases. During
the alpha tests, our users were free to choose how they
wanted to use the system, while we asked them directly
for feedback on how to improve the chat, so that we could
understand the problems and technical drawbacks encoun-
tered, as well as the needs and desires of our users. During
our beta testing phase, we invited external users to par-
ticipate in a closed beta test. They were asked to fill out
a survey after using the system to create a user study for
quantitative evaluation.

The 15 participants in our user study were asked to
create their own character using our design tool, followed
by an optional tutorial explaining all the features of the
chat, and then to chat in one of 14 different themed rooms
we provided, three of which included a chatbot. The sur-
vey consisted of questions to understand the general chat
usage history of our participants, questions about the us-
ability of our systems, and a third segment asking detailed
questions about our various features. All of our partici-
pants were familiar with and regularly used common chat
systems.

7.1. User interface design

To evaluate our current user interface, we computed
the System Usability Score (SUS) [6], which consists of
a set of ten questions rated on a five-point Likert scale,
where a score of 1 indicates strong disagreement with a
statement and a score of 5 indicates strong agreement. A
score from 0 to 100 is calculated from the responses, with
100 indicating high subjective satisfaction with the usabil-
ity of the system. The resulting score of 65.3 indicates
that the interface still needs improvement, which may be
partly due to the fact that a group of users did not take
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the tutorial – as a result, they were not aware of the Emo-
tion Selection (ES) feature. Figure 16 shows how omitting
these users from the test evaluation gives a clearer pic-
ture of overall user satisfaction, as most other users found
the chat fun and easy to use. It does, however, highlight
the importance of designing a user interface that allows
users to intuitively find and understand all the features
of the system. Another critical issue that the survey re-
vealed was disapproval of image loading times (see 7.4),
especially when a large group of people were generating
images at the same time. Longer loading times tended to
cause users to post several short messages in a row, which
in turn tended to branch the conversation into multiple
topic threads within the same chat room, causing confu-
sion.

7.2. Emotional expressiveness

The survey questions about our various chat features,
such as emotion selection and meme creation, were also
rated on a five-point Likert scale. On average, users felt
that their characters were relatable to them and that choos-
ing emotions for their personal characters helped them ex-
press their feelingsand found the number of available emo-
tions sufficient. This result suggests that visualizing emo-
tions in personally designed characters helps people com-
municate their feelings. The personalized memes (sec.5.5)
were also found to be helpful, and users mostly agreed that
the images were visually appealing and added excitement
to the conversation. Users also found that the speech bub-
bles were clearly associated with the speaker (sec. 6.4).

In addition, we compared our chat system with the
manga-style chat system of [24], which is the closest com-
parable system since Microsoft Comic Chat, in terms of
emotional expressiveness, and similar to us, they conducted
a study with 12 users. Fig. 16 shows that users of both
systems felt they were able to express their emotions rea-
sonably well, while their users also seemed to find it easier
to understand the emotions of their chat partner. So while
understanding emotions or intentions was generally rated
slightly higher in the manga chat system, this is partly be-
cause the waiting times for messages (see 7.4) and a larger
group of people chatting at the same time caused some
confusion in our test setup, as some users noted, and [24]
only tested their chat with pairs of users. Also, they com-
pared their system to a text-only chat system, which may
have led to a more favorable result in terms of compara-
tive expressiveness. Importantly, both groups felt they had
a sufficient number of emotions to choose from, but our
users were significantly less overwhelmed when choosing
emotions. This demonstrates the usability of our emotion
selection interface, which displays personalized previews
(see Fig. 4).

7.3. Character design

Users were asked to rate the character design tool de-
scribed in sec. 5.2. The preference for writing a description

versus using tags directly for character design was incon-
clusive – further investigation of this question would re-
quire a larger sample size and a clear distinction between
users working only with a text description and users refin-
ing character prompts with tags.

The ease of designing a character was rated with an
average score of 3.2 – the tag customization editor was
significantly more complex than our default option of pro-
viding simple text input, including detailed explanations
of tag selection and weighting - this may have led users
working with the complex part of the editor to rate the
system as more difficult to use. We chose to allow edit-
ing the raw prompt for customization, prioritizing good
personalization options over simplicity of the interface. In
the future, it would probably be useful to distinguish be-
tween users who want a simple interface and users who
want the most flexibility in creating their character, and
provide them with different interfaces.

7.4. Panel generation time

The image generation on our test system with a sin-
gle NVIDIA 4090 graphics card took about 2.8 seconds to
create a character sprite including background segmenta-
tion (see sec. 6.2) at 512× 768, about 4 seconds to create
a new background at 1280 × 1024 (640 × 512 with latent
upscaling), and about 1 second to create a background at
640×512 (see sec. 6.1). The processing time for creating a
background prompt using the LLM was about 0.5 seconds,
and generating bot responses took an average of 0.6 sec-
onds. We did not measure the time for image compositing
and speech bubble generation (using CPU), but it was not
a limiting factor compared to image generation.

8. Limitations and future work

Our work aims to provide a real-time comic generation
system. This comes with certain trade-offs, such as fast
image generation being more important in our application
than having the highest quality images, as we have seen
in our beta tests. Similarly, we use a simplified panel lay-
out where each panel is the same size for simplicity and to
be able to wrap the panels according to the user’s screen
size, which is especially important for mobile devices. An-
other limitation is that we cannot easily detect unrealis-
tic height differences between characters and background
objects in the generation scenes. Backgrounds with land-
scapes and large places like the interior of a cave worked
fine, but scenes in e.g. office rooms resulted in characters
being disproportionately large or small compared to the
furniture, and our approach of randomly zooming into the
background cutouts (see sec. 6.1) cannot be used for such
scenes.

Furthermore, since we are using generative text and
image generation models, the typical problems of these
methods are also relevant to our system. Not all generated
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images and text will match user expectations, and topic de-
tection, for example, could produce semantically inconsis-
tent image model prompts that perform worse than hand-
crafted prompts. In addition, there is a risk that images
may not always be “safe for work” and even seemingly
harmless prompts could potentially trigger unwanted con-
tent. Our system strives to give users as much creative
freedom as possible, but we recognize that this freedom
can be abused, so we filter certain tags and use negative
prompts for the image generation model. Should inap-
propriate content become an issue, we will consider using
an image safety checker before adding character images to
panels.

Computational cost

The image generation with Stable Diffusion is the com-
putational bottleneck, compared to which the remaining
processing time is negligible. Since renting servers with
graphics cards capable of running neural nets is more ex-
pensive than renting regular servers, an important point
in scaling the system will be to use the GPUs efficiently
so that images can be delivered in time, but there is little
time when the GPUs are idle but still paid for. One op-
tion to explore is to use an image generation API provider
that charges per image or by processing time and does not
charge if no image is generated, rather than renting servers
for image generation.

Future models

We will evaluate the use of upcoming Stable Diffusion
models, such as Stable Diffusion 3 [17], even though cur-
rent results using the Stable Diffusion 3 base model are
inferior to those of its predecessors in many use cases, and
lack of quality and licensing issues have reduced the in-
terest of the Stable Diffusion community in creating fine-
tuned models and LoRA models. For Stable Diffusion 1.5
and SDXL, another interesting new direction may be to re-
place the Latent Consistency Model (LCM) with a Phased
Consistency Model (PCM) [52].

While the quality issues of Stable Diffusion 3 may be
resolved if the community adopts the model, we will also
evaluate other completely different text-to-image models,
such as Kandinsky [4], Lumina-T2X [19], PixArt-Σ[11],
Kolors [48], AuraFlow [45], Flux [7], and Lumina-mGPT
[33]. There are also many new language models that could
be good alternatives to Mistral 7B. Two notable releases
worth considering for systems like ours are Llama3 8B [16]
and Mistral-Nemo 12B [36], both of which are quite pow-
erful models despite having a small number of parameters.

9. Conclusion

In this paper, we have effectively used advanced large-
scale Gen-AI models to develop an innovative comic chat
system that automates the generation of comics from con-
versations. Our system incorporates Gen-AI-based design

tools that allow for extensive character and scene person-
alization, and features a layout algorithm that dynam-
ically arranges characters and speech bubbles to ensure
clear reading order and coherent visual storytelling as new
chat lines are introduced. Furthermore, it dynamically
adapts background images and characters to conversation
topics and user input, including emotions and other con-
textual elements, providing additional visual cues that al-
low viewers to perceive the sequence of comic panels as
fluid and dynamic. Our evaluation, based on user studies,
shows that personalized characters and the wide range of
expression options significantly improved user interaction
and the ability to communicate emotions and ideas on-
line. Users appreciated the ease of conveying emotions and
found the comic-style format of chat conversations engag-
ing and intuitive. By combining the power of visual story-
telling with the interactivity of digital chat, our comic chat
system not only makes conversations more engaging, but
also bridges the gap between text-based and visual com-
munication, providing an effective way to convey emotions
and ideas in digital conversations.
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Appendix A. Placement algorithms

We show the pseudocode for our simple but effective
algorithms for placing characters and speech bubbles in
chat panels. Algorithm 1 updates a panel for a new chat
line and places the speaking character in the panel if it is
not already there. Algorithm 2 moves the existing charac-
ters to make room for an additional character in the panel,
and algorithm 3 finally places the bubble for the new chat
line.

Algorithm 1: Updating a panel for a new chat
line
Data: Panel P with n characters c1, . . . , cn
Input: Speaker c, text t
Output: Modified or new panel P
if not c ∈ P then

// Add the character to the panel

if n < nmax then
if P.width− cn.right < c.width then

move characters(P, c)
end
left ← random(cn.right, P.width− c.width)

else
P ← new panel()
left ← random(0, P.width− c.width)

end
create sprite(c);
place character(P, c, left, P.height− c.height)

else
// Generate the new emotion, pose, etc.

update sprite(c)
end
B ← create bubble(t) place bubble(P, c,B)
draw tail(B, c.face);
return P

Algorithm 2: Move characters to make room for
a new one
Data: Panel P with characters c1, . . . , cn
Input: New character cn+1

Output: Modified panel P
left← 0 // Leftmost admissible position

for i ∈ {1, . . . , n} do
// Leave space for n− i characters

ci.left←
random(left, P.right−

∑n
j=i+1 width(cj))

left = ci.left+ ci.width
end
return P
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Algorithm 3: Placing a bubble in the top row of
a panel

Data: Current Panel P with characters
c1, . . . , cm, upper row bubbles B1, . . . , Bn

Input: Speaker ci ∈ {c1, . . . , cm}, New bubble
Bn+1

Output: Modified or new panel P
/* Check correct reading order for

character ci and character c(Bn) */

if ci.left > c(Bn).left then
box left← Bn.right
box top← max(0, Bn.top−Bn.height/3)
box right←
min(c(Bn).right, P.width−Bn+1.width)
faces top← minj(cj .face top)
box bottom← max(0, faces top−Bn+1.height)
if box left ≤ box right and
box top ≤ box bottom then

Bn+1.left← random(box left, box right)
Bn+1.top← random(box top, box bottom)

else
P ← place in bottom row(ci, Bn+1)

end

else
P ← place in bottom row(ci, Bn+1)

end
return P
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